Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T06:43:22.214Z Has data issue: false hasContentIssue false

Rapid Annealing of Implant Damage Using Thermal Radiation

Published online by Cambridge University Press:  15 February 2011

R. T. Fulks
Affiliation:
Varian Associates, Inc., Corporate Solid State Laboratory, Palo Alto, CA 94303
C. J. Russo
Affiliation:
Varian Associates, Inc., Extrion Division, Gloucester, MA 01930
D. F. Downey
Affiliation:
Varian Associates, Inc., Extrion Division, Gloucester, MA 01930
P. R. Hanley
Affiliation:
Varian Associates, Inc., Extrion Division, Gloucester, MA 01930
W. T. Stacy
Affiliation:
Philips Research Laboratories, Signetics Corp., Sunnyvale, CA 94086
Get access

Abstract

The rapid annealing of implant damage using thermal radiation has been shown to be a production-worthy method of achieving good activation and minimal dopant redistribution of implanted species. The method involves the shuttered exposure of a standard 3" or 4" silicon wafer to a uniform thermal radiation front produced by a graphite heater for short times (10–30 sec). The propagation of residual damage observed by TEM is significantly less than that produced by furnace annealing and device structures annealed have electrical characteristics comparable to standard furnace anneals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] See, for example, Laser and Electron Beam Solid Interactions and Materials Processing, ed. by Gibbons, J. F., Hess, L. D. and Sigmon, T. W. (North- Holland, New York, 1981).Google Scholar
[2]Hill, C., Laser and Electron Beam Solid Interactions and Materials Processing, ed. by Gibbons, J. F., Hess, L. D. and Sigmon, T. W. (North- Holland, New York, 1981), p. 361.Google Scholar
[3]Fulks, R. T., Russo, C. J., Hanley, P. R. and Kamins, T. I., Appl. Phys. Lett. 39, 604 (1981).Google Scholar
[4]Yep, T. O., Fulks, R. T. and Powell, R. A., Appl. Phys. Lett. 38, 162 (1981).Google Scholar
[5]Powell, R. A., Yep, T. O. and Fulks, R. T., Appl. Phys. Lett. 39, 150 (1981).Google Scholar
[6]Tsaur, B. Y., Donnelly, J. P., Fan, John C. C. and Geis, M. W., Appl. Phys. Lett. 39, 93 (1981).Google Scholar
[7]Fulks, R. T., Powell, R. A., Deitchman, C. L. and Kamins, T. I., presented at 23rdAnnual Electronic Materials Conf., Santa Barbara, CA, 1981.Google Scholar
[8]Russo, C. J. and Muka, R., U.S. Patent Pending.Google Scholar
[9]Fistul, V., Heavily Doped Seminconductors, Chap. 4 (Plenum Press, 1969).Google Scholar
[10]Lietoila, A., Gibbons, J. F. and Sigmon, T. W., Appl. Phys. Lett. 36, 765 (1980).Google Scholar
[11]Tsai, M. Y., Morehead, F. F. and Baglin, J. E. E., J. Appl. Phys. 51, 3230 (1980).Google Scholar
[12]Mader, S. and Michel, A. E., J. Vac. Sci. Technol. 13, 391 (1976).Google Scholar
[13]Mader, S. and Michel, A. E., Phys. Stat. Sol.(a) 33, 793 (1976).Google Scholar