Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T14:56:04.423Z Has data issue: false hasContentIssue false

Rapid and Sensitive Detection of Cardiac Markers in Human Serum Using Surface Acoustic Wave Immunosensor

Published online by Cambridge University Press:  17 January 2012

Joonhyung Lee
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Youn-Suk Choi
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Yeolho Lee
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Hun Joo Lee
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Jung Nam Lee
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Sang Kyu Kim
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Kyung Yeon Han
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Eun Chol Cho
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Jae Chan Park
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Soo Suk Lee
Affiliation:
Bio Lab., Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea
Get access

Abstract

We present a rapid and sensitive surface acoustic wave (SAW) immunosensor that utilizes gold staining as a signal enhancement method. A sandwich immunoassay was performed on sensing area of the SAW sensor, which could specifically capture and detect cardiac markers (cardiac troponin I (cTnI), creatine kinase (CK)-MB, and myoglobin). The analytes in human serum were captured on gold nanoparticles (AuNPs) that were conjugated in advance with detection antibodies. Introduction of these complexes to the capture antibody-immobilized sensor surface resulted in a classic AuNP-based sandwich immunoassay format that has been used for signal amplification. In order to achieve further signal enhancement, a gold staining method was performed, which demonstrated that it is possible to obtain gold staining-mediated signal augmentation on a mass-sensitive device. The sensor response due to gold staining varied as a function of cardiac marker concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wu, G. H., Datar, R. H., Hansen, K. M., Thundat, T., Cote, R. J., and Majumdar, A., Nat. Biotechnol. 19, 856 (2001).Google Scholar
2. Lee, J., Icoz, K., Roberts, A., Ellington, A. D., Savran, C. A., Anal. Chem. 82, 197 (2010).Google Scholar
3. Yang, L. T., Fung, C. W., Cho, E. J., and Ellington, A. D., Anal. Chem. 79, 3320 (2007).Google Scholar
4. Savran, C. A., Knudsen, S. M., Ellington, A. D., and Manalis, S. R., Anal. Chem. 76, 3194 (2004).Google Scholar
5. Lyon, L. A., Musick, M. D., and Natan, M. J., Anal. Chem. 70, 5117 (1998).Google Scholar
6. Knudsen, S. M., Lee, J., Ellington, A. D., and Savran, C. A., J. Am. Chem. Soc. 128, 15936 (2006).Google Scholar
7. Lee, H. J., Namkoong, K., Cho, E. C., Ko, C., Park, J. C., Lee, S. S., Biosens. Bioelectron. 24, 3120 (2009).Google Scholar
8. Du, J., Harding, G. L., Ogilvy, J. A., Dencher, P. R., and Lake, M., Sens. Actuators, A: Phys. 56, 211 (1996).Google Scholar
9. Jakoby, B., and Vellekoop, M. J., Sens. Actuators, A: Phys. 68, 275 (1998).Google Scholar
10. Gizeli, E., Goddard, N. J., Lowe, C. R., and Stevenson, A. C., Sens. Actuators, B 6, 131 (1992).Google Scholar
11. Gizeli, E., Stevenson, A. C., Goddard, N. J., and Lowe, C. R., IEEE Trans. Ultason. 39, 657 (1992).Google Scholar
12. Kovacs, G., and Venema, A., Appl. Phys. Lett. 61, 639 (1992).Google Scholar
13. Fu, Y. Q., Luo, J. K., Du, X. Y., Flewitt, A. J., Li, Y., Markx, G. H., Walton, A. J., and Milne, W. I., Sens. Actuators, B 143, 606 (2010).Google Scholar
14. Bender, F., Cernosek, R., and Josse, F., Electron. Lett. 36, 1672 (2000).Google Scholar
15. Kim, D., Daniel, W. L., and Mirkin, C. A., Anal. Chem. 81, 9183 (2009).Google Scholar
16. Kavsak, P. A., MacRae, A. R., Yema, M., and Jeffe, A. S., Clinical Chemistry 55, 573 (2009).Google Scholar
17. Mohammed, M., and Desmulliez, M. Y., Lab Chip 11, 569 (2011).Google Scholar
18. Kondoh, J., Matsui, Y., and Shiokawa, S., Jpn. J. Appl. Phys. 32, 2376 (1993).Google Scholar
19. Masson, J. F., Obando, L., Beaudoin, S., and Booksh, K., Talanta. 62, 865 (2004).Google Scholar
20. Wei, J., Mu, Y., Song, D., Fang, X., Liu, X., Bu, L., Zhang, H., Zhang, G., Ding, J., Wang, W., Jin, Q., and Luo, G., Anal. Biochem. 321, 209 (2003).Google Scholar