Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T08:07:02.063Z Has data issue: false hasContentIssue false

Random Telegraph Noise in Individual Single-walled Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

SungHo Jhang
Affiliation:
School of Physics, Seoul National University, Seoul, 151–747, Korea
SangWook Lee
Affiliation:
School of Physics, Seoul National University, Seoul, 151–747, Korea
DongSu Lee
Affiliation:
School of Physics, Seoul National University, Seoul, 151–747, Korea
Eleanor E. B. Campbell
Affiliation:
Department of Experimental Physics, Gothenburg University and Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
Siegmar Roth
Affiliation:
Max-Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
YungWoo Park
Affiliation:
School of Physics, Seoul National University, Seoul, 151–747, Korea
Get access

Abstract

The switching of resistance between two discrete values, known as random telegraph noise (RTN), was observed in individual single-walled carbon nanotubes (SWNTs). The RTN has been studied as a function of bias-voltage and gate-voltage as well as temperature. By analyzing the features of the RTN, we identify three different types of RTN existing in the SWNT related systems. While the RTN can be generated by the various charge traps in the vicinity of the SWNTs, the RTN for metallic SWNTs is mainly due to reversible defect motions between two metastable states, activated by inelastic scattering with electrons.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dekker, C., Phys. Today 52 (1999) 22;Google Scholar
Nygård, J., Cobden, D. H., Bockrath, M., McEuen, P. L., Lindelof, P. E., Appl. Phys. A 69 (1999) 297.Google Scholar
2. Collins, P. G., Fuhrer, M. S., Zettl, A., Appl. Phys. Lett. 76 (2000) 894.Google Scholar
3. Ahlskog, M., Tarkiainen, R., Roschier, L., Hakonen, P., Appl. Phys. Lett. 77 (2000) 403.Google Scholar
4. Roschier, L., Tarkiainen, R., Ahlskog, M., Paalanen, M., Hakonen, P., Appl. Phys. Lett. 78 (2001) 3295.Google Scholar
5. Postma, H. W. Ch., Teepen, T. F., Yao, Z., Dekker, C., in Electronic correlations: from meso- to nano-physics, edited by Martin, Th. and Montambaux, G. (EDP Sciences, France, 2001).Google Scholar
6. Vajtai, R., Wei, B. Q., Zhang, Z. J., Jung, Y., Ramanath, G., Ajayan, P. M., Smart Mater. Struct. 11 (2002) 691.Google Scholar
7. Roche, P. -E., Kociak, M., Guéron, S., Kasumov, A., Reulet, B., Bouchiat, H., Eur. Phys. J. B 28 (2002) 217.Google Scholar
8. Ouacha, H., Willander, M., Yu, H. Y., Park, Y. W., Kabir, M. S., Persson, S. H. M., Kish, L. B., Ouacha, A., Appl. Phys. Lett. 80 (2002) 1055.Google Scholar
9. Starmark, B., Henning, T., Claeson, T., Delsing, P., J. Appl. Phys. 86 (1999) 2132.Google Scholar
10. Nygård, J., Cobden, D. H., Appl. Phys. Lett. 79 (2001) 4216.Google Scholar
11. Jhang, S. H., Lee, S. W., Lee, D. S., Roth, S., Campbell, E. E. B., Kim, G. T., Park, Y. W. (to be published).Google Scholar
12. Kirton, M. J., Uren, M. J., Adv. Phys. 38 (1989) 367.Google Scholar
13. Ralls, K. S., Skocpol, W. J., Jackel, L. D., Howard, R. E., Fetter, L. A., Epworth, R. W., Tennant, D. M., Phys. Rev. Lett. 52 (1984) 228.Google Scholar
14. Ralls, K. S., Buhrman, R. A., Phys. Rev. Lett. 60 (1988) 2434.Google Scholar
15. Farmer, K. R., Rogers, C. T., Buhrman, R. A., Phys. Rev. Lett. 58 (1987) 2255.Google Scholar
16. Fuhrer, M. S., Kim, B. M., Dürkop, T., Brintlinger, T., Nano Lett. 2 (2002) 755.Google Scholar
17. Radosavljević, M., Freitag, M., Thadani, K. V., Johnson, A. T., Nano Lett. 2 (2002) 761.Google Scholar
18. Cui, J. B., Sordan, R., Burghard, M., Kern, K., Appl. Phys. Lett. 81 (2002) 3260.Google Scholar
19. Kim, W., Javey, A., Vermesh, O., Wang, Q., Li, Y., Dai, H., Nano Lett. 3 (2003) 193.Google Scholar
20. Ralls, K. S., Buhrman, R. A., Phys. Rev. B 40 (1991) 5800.Google Scholar
21. Holweg, P. A. M., Caro, J., Verbruggen, A. H., Radelaar, S., Phys. Rev. B 45 (1992) 9311.Google Scholar
22. Muller, C. J., van Ruitenbeek, J. M., de Jongh, L. J., Phys. Rev. Lett. 69 (1992) 140.Google Scholar