Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T11:27:37.867Z Has data issue: false hasContentIssue false

Radioactive Ni* Tracer Study of the Nickel Silicide Growth Mechanism

Published online by Cambridge University Press:  15 February 2011

J. E. E. Baglin
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 (U.S.A.)
H. A. Atwater
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 (U.S.A.)
D. Gupta
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 (U.S.A.)
F. M. D'heurle
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 (U.S.A.)
Get access

Extract

A tracer technique using radioactive 56Ni* was applied to investigate the growth mechanisms ofNi2Si, NiSi and NiSi2 on Si<100> and Si <111> wafers. A thin Ni* tracer layer initially at the Ni-Si interface was observed to migrate and spread during the growth of nickel silicides at 350, 450 and 800°C. These data are discussed, together with other results from 31Si* tracer work and xenon marker experiments. Ni appears to be the dominant moving species in all cases, diffusing both substitutionally and by grain boundary paths (in comparable amounts) for Ni2Si and substitutionally for NiSi and NiSi2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tu, K. N. and Mayer, J. W., in Poate, J. M., Tu, K. N. and Mayer, J. W. (eds.), Thin Films- Interdiffusion and Reactions, Wiley, New York, 1978, Chap. 10.Google Scholar
2 Canali, C., Majni, G., Ottaviani, G. and Celotti, G., J. Appl. Phys., 50 (1979) 255.CrossRefGoogle Scholar
3 Tu, K. N., Alessandrini, E., Chu, W.-K., Kräiutle, H. and Mayer, J. W., Jpn. J. Appl. Phys., Suppl. 2, Part 1 (1974) 669.CrossRefGoogle Scholar
4 Tu, K. N., Chu, W.-K. and Mayer, J. W., Thin Solid Films, 25 (1975) 403.CrossRefGoogle Scholar
5 Baglin, J. E. E., d'Heurle, F. M. and Petersson, C. S., in Baglin, J. and Poate, J. (eds.), Thin Film Interfaces and Interactions, Electrochemical Society, Princeton, NJ, 1980, p. 341.Google Scholar
6 Tu, K. N., J. Appl. Phys., 48 (1977) 3379.CrossRefGoogle Scholar
7 Finstad, T. G., Phys. Status Solidi A, 63 (1981) 223.CrossRefGoogle Scholar
8 d'Heurle, F. M., Petersson, C. S., Stolt, L. and Stritzker, B., J. Appl. Phys., to be published.Google Scholar
9 Pretorius, R., J. Electrochem. Soc., 128 (1981) 107.CrossRefGoogle Scholar
10 Pretorius, R., Strydom, W. and Mayer, J. W., Phys. Rev. B, 22 (1980) 1885.CrossRefGoogle Scholar
11 Petersson, S., Baglin, J., Hammer, W., d'Heurle, F., Kuan, T., Ohdomari, I., deSousa Pires, J. and Tove, P., J. Appl. Phys., 50 (1979) 3357.CrossRefGoogle Scholar
12 Harrison, L. G., Trans. Faraday Soc., 57(1961) 1191.CrossRefGoogle Scholar
13 Botha, A. P. and Pretorius, R., Thin Solid Films, 93 (1982) 127.CrossRefGoogle Scholar
14 Baglin, J. E. E. and d'Heurle, F. M., to be published.Google Scholar
15 Botha, A. P., Pretorius, R. and Lombard, J. C., Annu. Res. Rep., 1980, p. 62 (Southern Universities Nuclear Institute, Faure, South Africa).Google Scholar