Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-21T01:00:00.365Z Has data issue: false hasContentIssue false

Radiative Versus Nonradiative Decay Processes in Germanium Nanocrystals Probed by Time-resolved Photoluminescence Spectroscopy

Published online by Cambridge University Press:  01 February 2011

P. K. Giri
Affiliation:
Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
R. Kesavamoorthy
Affiliation:
Materials Science Division, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, India
B. K. Panigrahi
Affiliation:
Materials Science Division, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, India
K.G.M. Nair
Affiliation:
Materials Science Division, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, India
Get access

Abstract

Ge nanocrystals (NCs) of diameter 4–13 nm are grown embedded in a thermally grown SiO2 layer by Ge ion implantation and subsequent annealing. Steady state and time-resolved photoluminescence (PL) studies are performed on these embedded Ge nanocrystals to understand the origin of the PL emission at room temperature. Steady state PL spectra show a broad peak consisting of a peak at ∼2.1 eV originating from Ge NCs and another peak at ∼2.3 eV arising from ion-beam induced defects in the Ge/SiO2 interface. Time-resolved PL studies reveal double exponential decay dynamics of the PL emission on the nanoseconds time scale. The faster component of the decay with large amplitude and having a time constant τ1∼3.1 ns is attributed to the nonradiative lifetime, since the time constant reduces with increasing defect density. The slower component with time constant τ2∼10 ns is attributed to radiative recombination at the Ge NCs. These results are in close agreement with the theoretically predicted radiative lifetime for small Ge NCs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kovalev, D., Heckler, H., Ben-Chorin, M., Polisski, G., Schwartzkopff, M., Koch, F., Phys. Rev. Lett. 81, 2803 (1998).Google Scholar
2 Garcia, C., Garrido, B., Pellegrino, P., Ferre, R., Moreno, J.A., Morante, J. R., Pavesi, L., Cazzanelli, M., Appl. Phys. Lett. 82, 1595 (2003).Google Scholar
3 Bostedt, C. and Burren, T. van, Willey, T. M., Franco, N., Terminello, L. J., Heske, C., Moller, T., Appl. Phys. Lett. 84, 4056 (2004).Google Scholar
4 Heath, J. R., Shiang, J. J., Alivisatos, A. P., J. Chem. Phys. 101, 1607 (1994).Google Scholar
5 Weissker, H.-Ch., Furthmüller, J., Bechstedt, F., Phys. Rev. B 65, 155327 (2002); ibid., Phys. Rev. B 65, 155328 (2002).Google Scholar
6 Maeda, Y., Phys. Rev. B 51, 1658 (1995).Google Scholar
7 Zhang, J., Bao, X., Ye, Y., Tan, X., Appl. Phys. Lett. 73, 1790 (1998).Google Scholar
8 Min, K. S., Shcheglov, K. V., Yang, C. M., Atwater, H. A., Brongersma, M. L., Polman, A., Appl. Phys. Lett. 68, (1996) 2511.Google Scholar
9 Wu, X. L., Gao, T., Siu, G. G., Tong, S., Bao, X. M., Appl. Phys. Lett. 74, (1999) 2420.Google Scholar
10 Takeoka, S., Fujii, M., Hayashi, S., Yamamoto, K., Phys. Rev. B 58, 7921 (1998).Google Scholar
11 Takeoka, S., Fujii, M., Hayashi, S., Yamamoto, K., Appl. Phys. Lett. 74, 1558 (1999).Google Scholar
12 Niquet, Y. M., Allan, G., Dellerue, C., Lanoo, M., Appl. Phys. Lett. 77, 1182 (2000).Google Scholar
13 Dovrat, M., Goshen, Y., Jedrzejewski, J., Balberg, I., Sa'ar, A., Phys. Rev. B 69, 155311 (2004).Google Scholar
14 Weissker, H.-Ch., Furthmuller, J., Bechstedt, F., Phys. Rev. B 69, 115310 (2004); ibid., Phys. Rev. B 67, 245304 (2003).Google Scholar
15 Giri, P. K., Kesavamoorthy, R., Panigrahi, B. K., Nair, K. G. M., (Unpublished).Google Scholar
16 Kim, H. B., Chae, K. H., Whang, C. N., Jeong, J. Y., Oh, M. S., Im, S., Song, J. H., J. Lumin. 80, 281 (1999).Google Scholar
17 Singh, Jasprit, Optoelectronics: An introduction to materials and devices, McGraw-Hill, 1996, Chap 5.Google Scholar