Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-06T23:05:36.897Z Has data issue: false hasContentIssue false

Radiation-induced decomposition of U(VI) alteration phases of UO2

Published online by Cambridge University Press:  21 March 2011

Satoshi Utsunomiya
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109-1063, USA
Rodney C. Ewing
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109-1063, USA
Get access

Abstract

U6+−phases are common alteration products of spent nuclear fuel under oxidizing conditions, and they may potentially incorporate actinides, such as long-lived 239Pu and 237Np, delaying their transport to the biosphere. In order to evaluate the ballistic effects of α-decay events on the stability of the U6+−phases, we report, for the first time, the results of ion beam irradiations (1.0 MeV Kr2+) for six different structures of U6+-phases: uranophane, kasolite, boltwoodite, saleeite, carnotite, and liebigite. The target uranyl-minerals were characterized by powder X-ray diffraction and identification confirmed by SAED (selected area electron diffraction) in TEM (transmission electron microscopy). The TEM observation revealed no initial contamination of uraninite in these U6+ phases. All of the samples were irradiated with in situ TEM observation using 1.0 MeV Kr2+ in the IVEM (intermediate-voltage electron microscope) at the IVEM-Tandem Facility of Argonne National Laboratory. The ion flux was 6.3 × 1011 ions/cm2/sec. The specimen temperatures during irradiation were 298 and 673 K, respectively. The Kr2+-irradiation decomposed the U6+-phases to nanocrystals of UO2 at doses as low as 0.006 dpa. The cumulative doses for the pure U6+-phases, e.g., uranophane, at 0.1 and 1 million years (m.y.) are calculated to be 0.009 and 0.09 dpa using SRIM2003. However, with the incorporation of 1 wt.% 239Pu, the calculated doses reach 0.27 and ∼1.00 dpa in ten thousand and one hundred thousand years, respectively.

Under oxidizing conditions, multiple cycles of radiation-induced decomposition to UO2 followed by alteration to U6+-phases should be further investigated to determine the fate of trace elements that may have been incorporated in the U6+-phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Finch, R. J., Ewing, R. C., J. Nucl. Mater. 190, 133 (1992).Google Scholar
[2]. Wronkiewicz, D. J., et al., J. Nucl. Mater. 190, 107 (1992).Google Scholar
[3]. Finch, R. J., Murakami, T., Rev. Miner. 38, 91 (1999).Google Scholar
[4]. Burns, P. C., Ewing, R. C., Miller, M. L., J. Nucl. Mater. 245, 1 (1997).Google Scholar
[5]. Curti, E., Coprecipitation of radionuclides: basic concepts, literature review and first applications, Paul Scherrer Institut, Bericht Nr. 97-10. p107 (1997).Google Scholar
[6]. Chen, Y., Computers & Geoscience, 29, 385 (2003).Google Scholar
[7]. Wronkiewiecz, D., Buck, E., Rev. Miner. 38, 475 (1999).Google Scholar
[8]. Chen, F., Ewing, R. C., Clark, S. B., Am. Mineral. 84, 650 (1999).Google Scholar
[9]. Murphy, W. M., Codell, R. B., Mater. Res. Soc. Proc. 556, 551 (1999).Google Scholar
[10]. Buck, E., et al. , Mater. Res. Soc. Proc. 506, 87 (1998).Google Scholar
[11]. Burns, P. C., Deely, K. M., Skanthakumar, S., Radiochim. Acta 92, 151 (2004).Google Scholar
[12]. Douglas, M., et al. , Radiochim. Acta 93, 265 (2005).Google Scholar
[13]. Douglas, M., et al. , Environ. Sci. Technol. 39, 4117 (2005).Google Scholar
[14]. Weber, W. J., et al. , J. Mater. Res. 13, 1434 (1998).Google Scholar
[15]. Matzke, H., Rad. Eff. Def. Solid. 64, 3 (1982).Google Scholar
[16]. Matzke, H., Wang, L. M., L.M., J. Nucl. Mater. 231, 155 (1996).Google Scholar
[17]. Ewing, R. C., Weber, W. J., Lian, J., J. Appl. Phys. 95, 5949 (2004).Google Scholar
[18]. Shoesmith, D. W., J. Nucl. Mater. 282, 1 (2000).Google Scholar
[19]. Utsunomiya, S., et al. , Am. Min. 88, 159 (2003).Google Scholar
[20]. Ziegler, J. F., Biersack, J. P., Littmark, U., The stopping and range of ions in solids (Pergamon, New York, 1985).Google Scholar
[21]. Wang, L. M., Ewing, R. C., Mater. Res. Soc. Bull. 17, 38 (1992).Google Scholar
[22]. Weber, W. J., Ewing, R. C., Science 289, 2051 (2000).Google Scholar
[23]. Wronkiewicz, D. J., Bates, J. K., Wolf, S. F., Buck, E. C., J. Nucl. Mater. 238, 78 (1996).Google Scholar
[24]. Burns, P. C., Rev. Miner. 38, 23 (1999).Google Scholar
[25]. Burns, P. C., Miller, M. L., Ewing, R. C., Can. Mineral. 34, 845 (1996).Google Scholar
[26]. Wang, L. M., et al. , Mater. Sci. Eng. A 286, 72 (2000).Google Scholar
[27]. Ball, R. G. J., et al. , J. Nucl. Mater. 201, 238 (1993).Google Scholar
[28]. Wang, S. X., Wang, L. M., Ewing, R. C., Phys. Rev. B 63, 024105, (2000).Google Scholar
[29]. Jensen, K. A., Swing, R. C., GSA Bull. 113, 32 (2001).Google Scholar
[30]. Janeczek, J., Ewing, R. C., J. Nucl. Mater. 190, 157173 (1992).Google Scholar
[31]. Janeczek, J., Rev. Miner. 38, 321 (1999).Google Scholar
[32]. Fayek, M., Am. Miner. 88, 1583 (2003).Google Scholar