Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-29T12:46:03.265Z Has data issue: false hasContentIssue false

Radiation Induced Amorphous Transformation in Intermetallic Compounds

Published online by Cambridge University Press:  15 February 2011

J. L. Brimhall
Affiliation:
Pacific Northwest Laboratory, Richland, WA 99352
H. E. Kissinger
Affiliation:
Pacific Northwest Laboratory, Richland, WA 99352
L. A. Charlot
Affiliation:
Pacific Northwest Laboratory, Richland, WA 99352
Get access

Abstract

Intermetallic compounds and ordered phases in the Ti-Ni, Ti-Fe, Re-Ta, and Mo-Ni systems became amorphous after high energy, ion irradiation. Compounds in the Ni-Al and Fe-Al systems remained crystalline and formed dislocation networks after similar irradiation. The ease of amorphous formation correlated best with the lack of solubility within the phase field. The high internal energy of the defect state in these limited solubility alloys is believed responsible for the tendency to transform to an amorphous state. A correlation with other properties such as atom size ratio or outer electron concentration was not found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Grant, W. A., J. Vac. Sci. Technol. 15(5), 1644 (1978).Google Scholar
2.Howe, L. M. and Rainville, M. H., J. Nucl. Mat., 68, 215 (1977).Google Scholar
3.Elliot, R. O., Koss, D. A. and Giessen, B. C., Scrip. Met. 14, 1061 (1980).Google Scholar
4.Follstaedt, D. M., Knapp, J. A. and Picraux, S. T., Appl.Phys.Lett., 37, 330 (1980).Google Scholar
5.Brimhall, J. L., Charlot, L. A., Wang, R., Scrip. Met. 13, 217 (1979).Google Scholar
6.Liu, H. C., Kinoshita, C. and Mitchell, T. E., Phase Stability During Irradiation, Holland, J. R., Mansur, L. K., Potter, D. I., eds., AIME, New York, pg. 343355.Google Scholar
7.Swanson, M. L., Parsons, J. R. and Hoelke, C. W., Rad. Eff. 9, 249 (1971).Google Scholar
8.Baranova, E. C., Gusev, V. M., Martynenko, Y. V., Starinin, C. V. and Haibullin, I. B., Rad. Eff. 18, 21 (1973).Google Scholar
9.Dennis, J. R. and Hale, E. B., J. Appl. Phys. 49, 1119 (1978).Google Scholar
10.Webb, R. and Carter, G., Rad. Eff. 42, 159 (1979).Google Scholar
11.Thompson, D. A., Golanski, A., Haugen, K. H., Stevanovic, D. V., Carter, G. and Christodoulides, C. E., Rad. Eff., 52, 69 (1980).Google Scholar
12.Bourgoin, J., Sol. State Cemm. 34, 25 (1980).Google Scholar
13.Naguib, H. M. and Kelly, R., Rad. Eff. 25, 1 (1975).Google Scholar
14.Morehead, F. F. Jr. and Crowder, B. L., Rad. Eff. 6, 27 (1970).Google Scholar
15.Carter, G., Armur, D. G., Donnelly, S. E. and Webb, R., Rad. Eff. 36, 1 (1978).Google Scholar
16.Hagel, W. C. in: Intermetallic Compounds, Westbrook, J. H., ed., John Wiley & Sons, New York, pg. 377404.Google Scholar