Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T15:07:25.251Z Has data issue: false hasContentIssue false

Radiation hardness of AlGaN/GaN based HEMTs

Published online by Cambridge University Press:  01 February 2011

S.A. Vitusevich
Affiliation:
Institut für Schichten und Grenzflächen, Forschungszentrum Jülich, Jülich 52425, Germany
N. Klein
Affiliation:
Institut für Schichten und Grenzflächen, Forschungszentrum Jülich, Jülich 52425, Germany
A.E. Belyaev
Affiliation:
Institute of Semiconductor Physics, NASU, Kiev 03028, Ukraine
S.V. Danylyuk
Affiliation:
Institut für Schichten und Grenzflächen, Forschungszentrum Jülich, Jülich 52425, Germany Institute of Semiconductor Physics, NASU, Kiev 03028, Ukraine
M.V. Petrychuk
Affiliation:
Institute of Semiconductor Physics, NASU, Kiev 03028, Ukraine
R.V. Konakova
Affiliation:
Institute of Semiconductor Physics, NASU, Kiev 03028, Ukraine
A.M. Kurakin
Affiliation:
Institute of Semiconductor Physics, NASU, Kiev 03028, Ukraine
A.E. Rengevich
Affiliation:
Institute of Semiconductor Physics, NASU, Kiev 03028, Ukraine
A.Yu. Avksentyev
Affiliation:
Institute of Semiconductor Physics, NASU, Kiev 03028, Ukraine
B.A. Danilchenko
Affiliation:
Institute of Physics, NASU, Kiev 03028, Ukraine
V. Tilak
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
J. Smart
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
A. Vertiatchikh
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
L.F. Eastman
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
Get access

Abstract

In this work we present steady-state characteristics and low-frequency noise spectra of AlGaN/GaN based high electron mobility transistors (HEMTs) exposed to gamma ray radiation. The devices with a variety of gate length (150-350 nm) and width (100-400 νm) were irradiated by 60Co gamma rays with doses in the range of 104-109 Rad and flux of 102 Rad/s. Dose dependencies of basic operating parameters of the transistors, such as saturation current (Isat), transconductance (gm), channel conductance (gc), and threshold voltage (VT) are analysed. Our study show that visible changes of above mentioned parameters are observed under relatively small doses (105 Rad) and strongly depend on the HEMT's topology. The transconductance decreases and threshold voltage becomes more negative for all devices while deviation of these parameters from its initial values does not exceed 20% at highest irradiation dose. At the same time variation of the channel conductance as well as saturation current depends to a high extent on the gate voltage (Vg). At |Vg| < |Vcr|, both Isat and gc show a reversal proportional to the cumulative dosage of radiation. However, at |Vg| > |Vcr|, drain saturation current and channel conductance increase with the cumulative dosage of radiation. The effect is more pronounced in short-length-gate devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Goodman, S. A., Auret, F. D., Legodi, M. J., Beaumont, B., and Gibart, P., Appl. Phys. Lett. 78, 3815 (2001)Google Scholar
2. Castaldini, A., Cavallini, A., and Polenta, L., J. Phys.: Condens. Matter 12, 10161 (2000)Google Scholar
3. Auret, F. D., Goodman, S. A., Koschnik, F. K., Spaeth, J.-M., Beaumont, B., and Gibart, P., Appl. Phys. Lett. 74, 407 (1999)Google Scholar
4. Shmidt, N. M., Davydov, D. V., Emtsev, V. V., Krestnikov, I. L., Lebedev, A. A., Lundin, W. V., Poloskin, D. S., Sakharov, A. V., Usikov, A. S., and Osinsky, A. V., Phys. Stat. Sol. (b) 216, 533 (1999)Google Scholar
5. Wang, Ching-Wu, Soong, Bo-Shao, Chen, Jing-Yu, Chen, Chih-Liang, and Su, Yan-Kuin, J. Appl. Phys. 88, 6355 (2000)Google Scholar
6. Luo, B., Johnson, J. W., Ren, F., Allums, K. K., Abernathy, C. R., Pearton, S. J., Dwivedi, R., Fogarty, T. N., Wilkins, R., Dabiran, A. M., Wowchak, A. M., Polley, C. J., Chow, P. P., and Baca, A. G., Appl. Phys. Lett. 79, 2196 (2001)Google Scholar
7. Luo, B., Johnson, J. W., Ren, F., Allums, K. K., Abernathy, C. R., Pearton, S. J., Dabiran, A. M., Wowchak, A. M., Polley, C. J., Chow, P. P., Schoenfeld, D., and Baca, A. G., Appl. Phys. Lett. 80, 604 (2002)Google Scholar
8. Neuberger, R., Müller, G., Ambacher, O., Stutzmann, M., Phys. Stat. Sol. (a) 183, R10 (2001).Google Scholar
9. Cai, S. J., Tang, Y. S., Li, R., Wei, Y. Y., Wong, L., Chen, Y. L., Wang, K. L., Chen, Mary, Zhao, Y. F., Schrimpf, R. D., Keay, J. C., and Galloway, K. F., IEEE Transactions on Electron Devices 47, 304 (2000)Google Scholar
10. Lukyanchikova, N. B., Noise Research in Semiconductor Physics, edited by Jones, B. K., (Gordon and Breach Science Publishers, Amsterdam, 1996), 411pp.Google Scholar
11. Bridger, P. M., Bandic, Z. Z., Piquette, E. C., and McGill, T. C., Appl. Phys. Lett. 74, 3522 (1999)Google Scholar
12. Belyaev, A. E., Breza, J., Venger, E. F., Vesely, M., Yu, I.. Il'in, Konakova, R.V., Liday, J., Lyapin, V. G., Milenin, V. V., Prokopenko, I. V., Tkhorik, Yu. A., Radiation resistance of GaAsbased microwave Schottky-barrier devices, Kiev, Interpress Ltd. (1998), 128pp.Google Scholar