Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T21:04:56.544Z Has data issue: false hasContentIssue false

Radiation Damage in Si Avalanche Photodiodes by 1-Mev Fast Neutrons and 220-Mev Carbon Particles

Published online by Cambridge University Press:  10 February 2011

H. Ohyama
Affiliation:
Kumamoto National College of Technology, 2659-2 Nishigoshi Kumamoto, 861-11Japan
T. Hakata
Affiliation:
Kumamoto National College of Technology, 2659-2 Nishigoshi Kumamoto, 861-11Japan
E. Simoen
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
C. Claeys
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
Y. Takami
Affiliation:
Rikkyo University, 2-5-1 Nagasaka Yokosuka Kanagawa, 240-01Japan
K. Hayama
Affiliation:
Kumamoto National College of Technology, 2659-2 Nishigoshi Kumamoto, 861-11Japan
J. Tokuyama
Affiliation:
Kumamoto National College of Technology, 2659-2 Nishigoshi Kumamoto, 861-11Japan
K. Shigaki
Affiliation:
Kumamoto National College of Technology, 2659-2 Nishigoshi Kumamoto, 861-11Japan
K. Kobayashi
Affiliation:
Kumamoto National College of Technology, 2659-2 Nishigoshi Kumamoto, 861-11Japan
H. Sunaga
Affiliation:
Takasaki JAERI, 1233 Watanuki Takasaki Gunma, 370-12Japan
K. Miyahara
Affiliation:
Kumamoto University, 39-1 Kurokami Kumamoto, 860Japan
M. Hososhima
Affiliation:
Japan Electronic Materials Co., 2-5-13, Amagasaki, Hyogo, 660Japan
Get access

Abstract

Results are presented of a study on the degradation of the electrical and optical performance of n+p Si avalanche photodiodes, subjected to 1-MeV fast neutrons and to a 220-MeV carbon irradiation. The dark current increases after irradiation, while the photo current decreases. Two dominant hole capture levels, which are responsible for the degradation of performance, are after irradiation observed by DLTS (Deep Level Transient Spectroscopy). The degradation caused by neutron irradiation is smaller than that for carbon irradiation. The differences in the radiation damage are explained by the differences in the number of knock-on atoms and the nonionizing energy loss (NIEL). The recovery behavior of the device performance by isochronal annealing is also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Watts, S.J., Matheson, J., Hopkins-Bond, I.H., Holmes-Siedle, A., Mohammadzadeh, A. and Pace, R., IEEE Trans. Nucl. Sci., 43, 2586 (1996).Google Scholar
2. Gill, K., Hall, G. and MacEvoy, B., J. Appl. Phys., 82, 126 (1997).Google Scholar
3. Wunstorf, R., IEEE Trans. Nucl. Sci., 44, 806 (1997).Google Scholar
4. Simoen, E., Claeys, C. and Ohyama, H., IEEE Trans. Nucl. Sci (in press).Google Scholar
5. Simoen, E., De Backker, K., Claeys, C. and Clauws, P., J. Electron Mater., 21, 533 (1992).Google Scholar
6. Ohyama, H., Vanhellemont, J. et al., Appl. Phys. Lett., 69, 2429 (1996).Google Scholar
7. Ohyama, H., Vanhellemont, J. et al., IEEE Trans. on Nucl. Sci., 42, 1550 (1995).Google Scholar
8. Ohyama, H., Simoen, E., Clacys, C. et al., Phys. Stat. Sol. a, 107, 429 (1988).Google Scholar
9. Ohyama, H., Simoen, E., Claeys, C. et al., in Crystalline Defects and Contamination: Their Impact and Control in Device Manufacturing II, Eds Kolbesen, B. O., Stallhofer, P., Claeys, C. and Tardiff, F., Electrochem. Soc. Ser., Pennington, PV-97-22, 143 (1997).Google Scholar