Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T17:57:12.438Z Has data issue: false hasContentIssue false

Quantum Well Shape Modification in Quaternary Quantum Wells

Published online by Cambridge University Press:  26 February 2011

Emil S. Köteles
Affiliation:
GTE Laboratories Inc. Waltham, MA 02254
A. N. M. Masum Choudhury
Affiliation:
GTE Laboratories Inc. Waltham, MA 02254
A. Levy
Affiliation:
GTE Laboratories Inc. Waltham, MA 02254
B. Elman
Affiliation:
GTE Laboratories Inc. Waltham, MA 02254
P. Melman
Affiliation:
GTE Laboratories Inc. Waltham, MA 02254
M. A. Koza
Affiliation:
Bellcore, Red Bank, NJ 07701
R. Bhat
Affiliation:
Bellcore, Red Bank, NJ 07701
Get access

Abstract

Quantum well interdiffusion has been employed, for the First time in the quaternary InGaAsP/InP system (grown lattice matched to InP substrates), in order to modify the as-grown, nominally square, shapes of single quantum wells so as to increase their bandgap energies. This was accomplished, in a spatially selective manner, by using low energy ion implantation through a mask to generate vacancies. Subsequent rapid thermal annealing drove these vacancies down to the quantum wells where their presence enhanced the thermally driven interdiffusion of atoms between the well and barrier layers. The goal of this work is to develop a simple process for the integration of optoelectronic devices with differing functions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 See, for example, Koteles, Emil S., Elman, E., Melman, P., Chi, J. Y., and Anniento, C. A., Optical and Quantum Electronics, 23, S779 (1991) for a review.Google Scholar
2 Meehan, K., Holonyak, N. Jr, Brown, J. M., Nixon, M. A., Gavrilovic, P., and Burnham, R. D., Appl. Phys. Lett, 45, 549 (1984).Google Scholar
3 Masum Choudhury, A. N. M., Melman, P., Sillctti, A., Koteles, Emil S., Foley, B., and Elman, B., IEEE Photonics Technology Letters, 3, 817 (1991).CrossRefGoogle Scholar
4 Elman, B., Koteles, Emil S., Melman, P., and Anniento, C. A., J. Appl. Phys, 66, 2104 (1989).CrossRefGoogle Scholar
5 Koteles, Emil S., Elman, B., Melman, P., and Armiento, C. A., in Layered Structures - Heteroepitaxy, Superlattices, Strain, and Metastability, edited by Dodson, B. W., Schowalter, L. J., Cunningham, J. E., and Poliak, F. H. (Mater. Res. Soc. Symp. Proc. 160 Pittsburgh, PA, 1990), pp 147151.Google Scholar
6 Koteles, Emil S., Masum Choudhury, A. N. M., Elman, B., Melman, P., Koza, M. A., and Bhat, R., Bulletin of the American Physical Society, 36, 423 (1991).Google Scholar
7 Kolbas, R. M., Hwang, Y. L., Zhang, T., Prairie, M., Hsieh, K. Y., and Mishra, U. K., Optical and Quantum Electronics, 23, S805 (1991).CrossRefGoogle Scholar
8 Bertolet, D. C., Hsu, Jung-Kuei, Lau, Kei May, Koteies, Emil S., Owens, D., J. Appl. Phys, 64, 6562 (1988).Google Scholar