Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-20T03:36:35.539Z Has data issue: false hasContentIssue false

Quantized Conductance and Neuromorphic Behavior of a Gapless-Type Ag-Ta2O5 Atomic Switch

Published online by Cambridge University Press:  06 June 2013

Tohru Tsuruoka
Affiliation:
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan. Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, 102-0075, Japan.
Tsuyoshi Hasegawa
Affiliation:
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan. Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, 102-0075, Japan.
Kazuya Terabe
Affiliation:
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan.
Masakazu Aono
Affiliation:
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan.
Get access

Abstract

We investigated quantization behavior in conductance of an Ag/Ta2O5/Pt gapless-type atomic switch. Stepwise increases and decreases in the conductance were observed when small positive and negative bias voltages were applied to the Ag electrode, respectively, where each step corresponds to the conductance of a single atomic point contact. The conductance level could also be controlled by applying voltage pulses with varied amplitudes. Furthermore, when the interval time of consecutive input pulses was turned, we also observed long-term potentiation behavior similar to that of biological synapses. These results indicate that the oxide-based, gapless-type atomic switch has potential for use as a building block of neural computing systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Waser, R., Aono, M., Nature Mater. 6, 833 (2007).CrossRefGoogle Scholar
Waser, R., Dittmann, R., Staikov, G., Szot, K., Adv. Mater. 21, 2632 (2009).CrossRefGoogle Scholar
Terabe, K., Hasegawa, T., Nakayama, T., Aono, M., Nature 433, 47 (2005).CrossRefGoogle Scholar
Hasegawa, T., Terabe, K., Sakamoto, T., Aono, M., MRS Bull. 34, 929 (2009).CrossRefGoogle Scholar
Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Jimzewski, J. K., Aono, M., Nature Mater. 10, 591 (2011).CrossRefGoogle Scholar
Tsuruoka, T., Terabe, K., Hasegawa, T., Aono, M., Nanotechnology 23, 435705 (2012).CrossRefGoogle Scholar
Tsuruoka, T., Terabe, K., Hasegawa, T., Aono, M., Nanotechnology 21, 425205 (2010).CrossRefGoogle Scholar
Tsuruoka, T., Terabe, K., Hasegawa, T., Aono, M., Nanotechnology 22, 254013 (2011).CrossRefGoogle Scholar
Tsuruoka, T., Terabe, K., Hasegawa, T., Valov, I., Waser, R., Aono, M., Adv. Func. Mater. 12, 70 (2012).CrossRefGoogle Scholar
Krans, J., Muller, C., Yanson, I., Govaert, T., Hesper, R., Ruitenbeek, J. M., Phys. Rev. B 48, 14721 (1994).CrossRefGoogle Scholar
Tapperzhofen, S., Valov, I., Waser R, R., Nanotechnology 23, 145703 (2012).CrossRefGoogle Scholar
Ohno, T., Hasegawa, T., Nayak, A., Tsuruoka, T., Gimzewski, J. K., Aono, M., Appl. Phys. Lett. 99, 203108 (2011).CrossRefGoogle Scholar
Nayak, A., Ohno, T., Tsuruoka, T., Terabe, K., Hasegawa, T., Gimzewski, J. K., Aono, M., Adv. Func. Mater. 22, 3606 (2012).CrossRefGoogle Scholar
Magleby, K. L., J. Physiol. 234, 327 (1973).CrossRefGoogle Scholar
Atluri, P. P., Regeh, W. G., J. Neurosci. 16, 5661 (1996).CrossRefGoogle Scholar