Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T02:25:41.683Z Has data issue: false hasContentIssue false

Quantitative Contact Spectroscopy and Imaging by Atomic-Force Acoustic Microscopy

Published online by Cambridge University Press:  10 February 2011

W. Arnold
Affiliation:
Fraunhofer-Institute for Nondestructive Testing (IZFP), Bldg. 37, University, D-66123 Saarbrficken, Germany (arnold@izfp.fhg.de)
S. Amelio
Affiliation:
Fraunhofer-Institute for Nondestructive Testing (IZFP), Bldg. 37, University, D-66123 Saarbrficken, Germany (arnold@izfp.fhg.de)
S. Hirsekorn
Affiliation:
Fraunhofer-Institute for Nondestructive Testing (IZFP), Bldg. 37, University, D-66123 Saarbrficken, Germany (arnold@izfp.fhg.de)
U. Rabe
Affiliation:
Fraunhofer-Institute for Nondestructive Testing (IZFP), Bldg. 37, University, D-66123 Saarbrficken, Germany (arnold@izfp.fhg.de)
Get access

Abstract

Atomic Force Acoustic Microscopy is a near-field technique which combines the ability in using ultrasonics to image elastic properties with the high lateral resolution of scanning probe microscopes. We present a technique to measure the contact stiffness and the Young's modulus of sample surfaces quantitatively with a resolution of approximately 20 rum exploiting the contact resonance frequencies of standard cantilevers used in Atomic Force Microscopy. The Young's modulus of nanocrystalline ferrite films have been measured as a function of oxidation temperature. Furthermore images showing the domain structure of piezoelectric lead zirconate titanate ceramics have been taken.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reerences

[1]Maivald, P., Butt, H.T., Gould, S.A., Prater, C.B., Drake, B., Gurley, J.A., Elings, V.B., and Hansma, P.K., Nanotech. 2,103 (1991).Google Scholar
[2]Radmacher, M., &Tillmann, W., and Gaub, H.E., Biophys. J. 64 735 (1993).Google Scholar
[3]Rohrbeck, W. and Chilla, E., Phys.Stat.Sol(a) 131, 69 (1992).Google Scholar
[4]Yamanaka, K., Ogiso, H., and Kolosov, O., Appl. Phys. Lett. 64, 178 (1994).Google Scholar
[5]Rabe, U. and Arnold, W., Appl. Phys. Lett. 64, 1493 (1994)Google Scholar
[6]Cretin, B. and Sthal, F., Appl. Phys. Lett. 62, 829 (1993).Google Scholar
[7]Burnham, N. A., Gremaud, G., Kulik, A.J., Gallo, P.-J., and Oulevy, F., J. Vac. Sci. Tech. B14, 1308 (1996).Google Scholar
[8]Rosa, A., Weilandt, E., Hild, S., and Marti, O., Meas. Sci. Tech. 8, 1 (1997).Google Scholar
[9]Rabe, U., Janser, K., and Arnold, W., Rev. Sci. Instrum. 67, 3281 (1996).Google Scholar
[10]Scherer, V., Arnold, W., and Bhushan, B., Surf. Interface Analysis, 27, 578 (1999)Google Scholar
[11]Hirsekorn, S., Appl. Phys. A66, S249 (1998).Google Scholar
[12]Rabe, U., Janser, K., and Arnold, W., in Acoustical Imaging, edited by Tortoli, P. and Masotti, L., Plenum Press, New York, 22, 669 (1996).Google Scholar
[13]Kolosov, O., Briggs, A., Yamanaka, K., and Arnold, W., in Acoustical Imaging, edited by Tortoli, P. and Masotti, L., Plenum Press, New York, 22, 665 (1996).Google Scholar
[14]Stark, R. W., Drobek, T., and Heckl, W. M., Appl. Phys. Lett. 74, 3296 (1999)Google Scholar
[15]Koch, A.J. and Becker, J.J, J. Appl. Phys. 39, 1261 (1968).Google Scholar
[16]Kester, E., Gillot, B, and Tailhades, Ph., Mat. Chem. Physics 51, 258 (1997).Google Scholar
[17]Kester, E. and Gillot, B., J. Phys. Chem. Solids, 59, 1259 (1998),Google Scholar
[18]Wright, O. and Nishiguchi, N., Appl. Phys. Lett. 71, 626 (1997)Google Scholar
[19]Yamanaka, K., Noguchi, A., Tsuji, T., Koike, T., and Goto, T., Surf. Interf. Analys., 27, 600 (1999)Google Scholar
[20]Hirsekorn, S., Rabe, U., and Arnold, W., Nanotechnology 8, 57 (1997).Google Scholar
[21]Turner, J., Hirsekorn, S., Rabe, U., and Arnold, W., J. Appl. Phys. 82, 966 (1997).Google Scholar
[22]Rabe, U., Turner, J., and Arnold, W., Appl. Phys., A66, S277 (1998).Google Scholar
[23]Rabe, U., Kester, E., and Arnold, W., Surf. Interface Anal. 27, 386 (1999).Google Scholar
[24]Mazeran, P.E. and Loubet, J.L., Trib. Lett. 3, 125 (1997).Google Scholar
[25]Johnson, K., Contact Mechanics, Cambridge University Press (1995).Google Scholar
[26]Rabe, U., Amelio, S., Hirsekorn, S., and Arnold, W., Ultrasonics, (2000), to be publishedGoogle Scholar
[27]Kester, E., Rabe, U., Presmanes, L., Tailhades, Ph., and Arnold, W., J. Phys. Chem. Sol., (2000), to be publishedGoogle Scholar
[28]Langlet, M. and Joubert, J. C., J. Appl. Phys. 64, 780 (1988).Google Scholar
[29]Nayfeh, A.H. and Mook, D.T., Nonlinear Oscillations, John Wiley, New York, 1995.Google Scholar
[30]Nayak, P.R., J. Sound and Vibration 22, 297 (1972).Google Scholar
[31]Auciello, O., Gruverman, A., Tokumoto, H., Prakash, S.A., Aggarwal, S., and Ramesh, R., MRS Bulletin, Jan. 1998, p.33.Google Scholar
[32]Rabe, U., Kester, E., Scherer, V., and Arnold, W., in Acoustical Imaging, edited by Lee, H., 24, (1999), Plenum Press, New York, to be publishedGoogle Scholar
[33]Eng, L. M., Güntherodt, H.-J., Schneider, G. A., Köpke, U, and Saldana, J. Munoz, Appl. Phys. Lett. 74, 233. (1999)Google Scholar
[34] see for example Moulson, A., and Herbert, J. M., Electroceramics, Chapman and Hall, London, 1990Google Scholar