Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T22:27:21.843Z Has data issue: false hasContentIssue false

Quantitative Analysis of Raman Spectra in Si/SiGe Nanostructures

Published online by Cambridge University Press:  28 February 2013

Selina Mala
Affiliation:
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, U.S.A.
Leonid Tsybeskov
Affiliation:
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, U.S.A.
Jean-Marc Baribeau
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario, Canada.
Xiaohua Wu
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario, Canada.
David J. Lockwood
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, Ontario, Canada.
Get access

Abstract

We present comprehensive quantitative analysis of Raman spectra in two-(Si/SiGe superlattices) and three-(Si/SiGe cluster multilayers) dimensional nanostructures. We find that the Raman spectra baseline is due to the sample surface imperfection and instrumental response associated with the stray light. The Raman signal intensity is analyzed, and Ge composition is calculated and compared with the experimental data. The local sample temperature and thermal conductivity are calculated, and the spectrum of longitudinal acoustic phonons is explained.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schäffler, F., Semicond. Sci. Technol. 12, 1515 (1997).CrossRefGoogle Scholar
Pavesi, L., Negro, L.Dal, Mazzoleni, C., Franzò, G. and Priolo, F., Nature, 408, 440 (2000).CrossRefGoogle Scholar
Chang, H.-Y. and Tsybeskov, L., in Silicon Nanocrystals: Fundamentals, Synthesis and Applications, edited by Pavesi, L. and Turan, R. (Eds. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010), p. 105.CrossRefGoogle Scholar
Tsen, K.-T., in Ultrafast Dynamical Processes in Semiconductors, edited by Tsen, K.-T. (Springer Science Publishers, New York, 2004), p. 222.CrossRefGoogle Scholar
Renucci, J.B., Renucci, M.A. and Cardona, M., Solid State Commun. 9, 1651 (1971).CrossRefGoogle Scholar
Brya, W.J., Solid State Commun. 12, 253 (1973).CrossRefGoogle Scholar
Alonso, M.I. and Winer, K., Phys. Rev. B 39, 10056 (1989).CrossRefGoogle Scholar
Mooney, P.M., Dacol, F.H., Tsang, J.C. and Chu, J.O., Appl. Phys. Lett. 62, 2069 (1993).CrossRefGoogle Scholar
Pezzoli, F., Bonera, E., Grilli, E., Guzzi, M., Sanguinetti, S., Chrastina, D., Isella, G., von Känel, H., Wintersberger, E., Stangl, J. and Bauer, G., J. Appl. Phys. 103, 093521 (2008).CrossRefGoogle Scholar
Cerdeira, F., Pinczuk, A., Bean, J.C., Batlogg, B. and Wilson, B.A., Appl. Phys. Lett. 45, 1138 (1984).CrossRefGoogle Scholar
Shin, H.K., Lockwood, D.J. and Baribeau, J.-M., Solid State Commun. 114, 505 (2000).CrossRefGoogle Scholar
Liu, J.L., Wan, J., Jiang, Z.M., Khitun, A., Wang, K.L. and Yu, D.P., J. Appl. Phys. 92, 6804 (2002).CrossRefGoogle Scholar
Tan, P.H., Brunner, K., Bougeard, D. and Abstreiter, G., Phys. Rev. B 68, 125302 (2003).CrossRefGoogle Scholar
Baranov, A.V., Fedorov, A.V., Perova, T.S., Moore, R.A., Yam, V., Bouchier, D., Le Thanh, V. and Berwick, K., Phys. Rev. B 73, 075322 (2006).CrossRefGoogle Scholar
Perova, T.S., Wasyluk, J., Lyutovich, K., Kasper, E., Oehme, M., Rode, K. and Waldron, A., J. Appl. Phys. 109, 033502 (2011).CrossRefGoogle Scholar
Hart, T.R., Aggarwal, R.L. and Lax, B., Phys. Rev. B 1, 638 (1970).CrossRefGoogle Scholar
Menéndez, J. and Cardona, M., Phys. Rev. B 29, 2051 (1984).CrossRefGoogle Scholar
Burke, H.H. and Herman, I.P., Phys. Rev. B 48, 15016 (1993).CrossRefGoogle Scholar
Chang, H.-Y., Tsybeskov, L., Sirenko, A., Lockwood, D.J., Baribeau, J.-M., Wu, X. and Dharma-wardana, M.W.C., MRS Symposium Proceedings 1145, 1145-MM12-01 (2009).Google Scholar
Barker, A.S. Jr., Merz, J.L. and Gossard, A.C., Phys. Rev. B, 17, 3181 (1978).CrossRefGoogle Scholar
Colvard, C., Gant, T.A., Klein, M.V., Merlin, R., Fischer, R., Morkoc, H. and Gossard, A.C., Phys. Rev. B 31, 2080 (1985).CrossRefGoogle Scholar
Sapriel, J., Michel, J.C., Tolédano, J.C., Vacher, R., Kervarec, J. and Regreny, A., Phys. Rev. B 28, 2007 (1983).CrossRefGoogle Scholar
Lockwood, D.J., Dharma-wardana, M.W.C., Baribeau, J.-M. and Houghton, D.C., Phys. Rev. B 35, 2243 (1987).CrossRefGoogle Scholar
Yang, Z., Liu, J.-L., Shi, Y., Zheng, Y.-D. and Wang, K.L., J. Nanoelectronics and Optoelectronics 1, 86 (2006).CrossRefGoogle Scholar
Rytov, S.M., Akust. Zh. 2, 71 (1956).Google Scholar
Baribeau, J.-M., Wu, X., Rowell, N.L., and Lockwood, D.J., J. Phys.: Condens. Matter, 18, R139 (2006).Google Scholar
Kamins, T.I. and Basile, D.P., J. Electron. Mater. 29, 570 (2000).CrossRefGoogle Scholar
Temple, P.A. and Hathaway, C.E., Phys. Rev. B 7, 3685 (1973).CrossRefGoogle Scholar
Holtz, M., Duncan, W.M., Zollner, S. and Liu, R., J Appl. Phys. 88, 2523 (2000).CrossRefGoogle Scholar
Lockwood, D.J. and Baribeau, J.-M., Phys. Rev. B 45, 8565 (1992).CrossRefGoogle Scholar
Tsang, J.C., Mooney, P.M., Dacol, F. and Chu, J.O., J. Appl. Phys. 75, 8098 (1994).CrossRefGoogle Scholar