Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-17T06:35:22.571Z Has data issue: false hasContentIssue false

Quantitative Analysis of Polarized Neutron Specular Reflectivity from a Co/Cu (111) Superlattice at the Second Antiferromagnetic Maximum

Published online by Cambridge University Press:  03 September 2012

J.F. Ankner
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
A. Schreyer
Affiliation:
Ruhr Universität Bochum, D-4630 Bochum, Federal Republic of Germany
C.F. Majkrzak
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
K. Bröhl
Affiliation:
Ruhr Universität Bochum, D-4630 Bochum, Federal Republic of Germany
Th. Zeidler
Affiliation:
Ruhr Universität Bochum, D-4630 Bochum, Federal Republic of Germany
P. Bödeker
Affiliation:
Ruhr Universität Bochum, D-4630 Bochum, Federal Republic of Germany
H. Zabel
Affiliation:
Ruhr Universität Bochum, D-4630 Bochum, Federal Republic of Germany
Get access

Abstract

We have used polarized neutron reflectivity to prove the existence of oscillatory coupling in MBE-grown Co/Cu (111) superlattices. For a sample of composition [3.4 nm Co/2.0 nm Cu]10, we find that only a small fraction of the sample volume exhibits coherent antiferromagnetic order, with the structure of the remainder of the film being attributable to ferromagnetic domains and small disordered structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cebollada, A., Martinez, J.L., Gallego, J.M., de Miguel, J.J., Miranda, R., Ferrer, S., Batallan, F., Fillion, G., and Rebouillat, J.P., Phys. Rev. B 39, 9726 (1989).Google Scholar
2. Pescia, D., Kerkmann, D., Schumann, F., and Gudat, W., Z. Phys. B 78, 475 (1990).Google Scholar
3. Parkin, S.S.P., Bhadra, R., and Roche, K.P., Phys. Rev. Lett. 66, 2152 (1991).Google Scholar
4. Mosca, D.H., Petroff, F., Fert, A., Schroeder, P.A., Pratt, W.P., and Laloee, R., J. Magn. Magn. Mater. 94, L1 (1991).Google Scholar
5. Egelhoff, W.F. Jr, and Kief, M.T., Phys. Rev. B 45, 7795 (1992).Google Scholar
6. Parkin, S.S.P., Marks, R.F., Farrow, R.F.C., Harp, G.R., Lam, Q.H., and Savoy, R.J., Phys. Rev. B 46, 9262 (1992).Google Scholar
7. Renard, J.P., Beauvillain, P., Dupas, C., Le Dang, K., Veillet, P., Vélu, E., Marlière, C., and Renard, D., J. Magn. Magn. Mater. 115, L147 (1992).Google Scholar
8. Johnson, M.T., Coehoorn, R., de Vries, J.J., McGee, N.W.E., aan de Stegge, J., and Bloemen, P.J.H., Phys. Rev. Lett. 69, 969 (1992).Google Scholar
9. Kohlhepp, J., Cordes, S., Elmers, H.J., and Gradmann, U., J. Magn. Magn. Mater. 111, L231 (1992).Google Scholar
10. Schreyer, A., Bröhl, K., Ankner, J.F., Zeidler, Th., Bödeker, P., Metoki, N., Majkrzak, C.F., and Zabel, H., Phys. Rev. B 47, in press.Google Scholar
11. Bruno, P. and Chappert, C., Phys. Rev. B 46, 261 (1992).Google Scholar
12. Dupas, C., Kolb, E., Le Dang, K., Renard, J.P., Veillet, P., and Vélu, E., submitted to J. Magn. Magn. Mater.Google Scholar
13. Bödeker, P., Abromeit, A., Bröhl, K., Sonntag, P., Metoki, N., and Zabel, H., Phys. Rev. B 47, 2353 (1993).Google Scholar
14. Bröhl, K., Bödeker, P., Metoki, N., Stierle, A., and Zabel, H., J. Crystal Growth 127, 682 (1993).Google Scholar
15. Ankner, J.F. and Majkrzak, C.F., in Neutron Optical Devices and Applications, edited by Majkrzak, C.F. and Wood, J.L., volume 1738 of Proc. SPIE, page 260, Bellingham, Wash. 1992, SPIE.Google Scholar
16. Ankner, J.F., Schreyer, A., Zeidler, Th., Majkrzak, C.F., Zabel, H., Wolf, J.A., and Grünberg, P., in this volume.Google Scholar
17. Majkrzak, C.F., Physica B 173, 75 (1991).Google Scholar
18. Ankner, J.F., Borchers, J.A., Farrow, R.F.C., and Marks, R.F., J. Appl. Phys. 73, 6427 (1993).Google Scholar
19. Miranda, R., private communication.Google Scholar