Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T16:15:06.935Z Has data issue: false hasContentIssue false

Qualitative and Quantitative Analysis of Stacking Disorder in α-and β-SiC by X-ray Diffraction and Structure Modeling

Published online by Cambridge University Press:  10 February 2011

Bogdan Palosz
Affiliation:
High Pressure Research Center UNIPRESS, ul.Sokolowska 29, 01 142 Warsaw, Poland
Svetlana Stel'makh
Affiliation:
High Pressure Research Center UNIPRESS, ul.Sokolowska 29, 01 142 Warsaw, Poland
Stanislaw Gierlotka
Affiliation:
High Pressure Research Center UNIPRESS, ul.Sokolowska 29, 01 142 Warsaw, Poland
Get access

Abstract

A method of analysis of disordering in α- and β-SiC polycrystals by numerical modeling, and a simulation of X-ray diffraction profiles are presented. The diffraction patterns of nonperiodic structures were simulated for models of 2000 layer fragments of the structure. Computer generation of the models was based on the Poisson function describing the size distribution of the domains of basic polytypes and faults. The models were quantified by a set of input probability parameters describing relative frequencies of the occurrence of the domains of polytypes and faults. Implementation of a correlation parameter that characterizes coherence of sequential domains of a given polytype assures a good reproducibility of the simulated diffraction profiles obtained for the same set of the model parameters. Based on this method, a quantitative analysis of disordering in polycrystals of SiC annealed in the temperature range 1100–2200 °C was performed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pain, L.F. and Miller, R.J.R., J.Mater.Sci. 10, 189192 (1975).Google Scholar
2. Ruska, J., Gauckler, L.I., Lorenz, J. and Rexer, H.U., J.Mater.Sci. 14, 20132017 (1979).Google Scholar
3. Frevel, L.K., Peterson, D.R. and Saha, C.K., J.Mater.Sci. 27, 19131925 (1992).Google Scholar
4. Palosz, B., Boysen, H., Schneider, J. and Schulz, H., Acta Phys.Polon. A, 83, 95106 (1993).Google Scholar
5. Wilson, A.J.C., Proc.R.Soc.London, A, 180, 277285 (1942).Google Scholar
6. Paterson, M.S., J.Appl.Phys., 23, 805811 (1952).Google Scholar
7 Jagodzinski, H., Sov.Phys.-Crystallogr., 16, 10811090 (1972).Google Scholar
8. Tateyama, H., Sutoh, N. and Murakawa, N., J.Ceram.Soc.Jpn.Int.Ed., 96, 985994 (1988).Google Scholar
9. Seo, W-S., Pai, Ch-H., Koumoto, K. and Yanagida, H., J.Ceram.Soc.Jpn., 99, 443447, 1179–1184 (1991); 100, 227–232 (1992).Google Scholar
10. Schields, P.J., Petuskey, W.T. and Buseck, P.R., EPDIC IV, Daresbury, UK (1995). Materials Science Forum - in press).Google Scholar
11. Treacy, M.M.J., Newman, J.M. and Deem, M.W., Proc.Roy.Soc.London A 433, 499520 (1991).Google Scholar
12. Pujar, V.V. and Cawley, J.D., J.Am.Ceram.Soc., 78, 774782 (1995).Google Scholar
13. Palosz, B., Stel'makh, S. and Gierlotka, S., Z. Kristallogr. 210, 731740 (1995).Google Scholar
14. Pampuch, R., Stobierski, L. and Lis, J., J.Am.Ceram.Soc. 72, 14341435 (1989).Google Scholar
15. Young, R. and Sakhtivel, A., J.Appl.Crystallogr. 21, 416425 (1988).Google Scholar