Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T06:06:19.798Z Has data issue: false hasContentIssue false

Pyroelectric Properties of the Plt(10) Thin Film on the P-Doped Poly Silicon

Published online by Cambridge University Press:  10 February 2011

Seong Jun Kang
Affiliation:
Department of Electronic Materials & Device Engineering, Inha University, Inchon 402–751, Korea
Yung Sup Yoon
Affiliation:
Department of Electronic Materials & Device Engineering, Inha University, Inchon 402–751, Korea
Dong Il Kim
Affiliation:
Department of Electronic Materials & Device Engineering, Inha University, Inchon 402–751, Korea
Get access

Abstract

We have studied the pyroelectric properties of the PLT(10) thin film deposited on a p-doped poly-Si electrode by using the sol-gel method. Measurement of the dielectric constant as a function of temperature shows the typical characteristics of a ferroelectric. The dielectric constant reaches a maximum at 295°C, which can be thought of as the Curie temperature. The PLT(10) thin film on p-doped poly-Si fabricated in this research shows excellent pyroelectric properties. The pyroelectric coefficient and the fiqures of merit, Fv and FD at room temperature are measured as 5.76 × 10−8 C/cm2 °C, 1.17 × 10−10C-cm/J and 0.93 × 10−8C-cm/J, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gavrilyachenko, V. G., Spinko, R. I., Martynenko, M. A., and Fesenko, E. G., Sov. Phys.-Solid State, 12, 1203 (1970).Google Scholar
2. Iijima, K., Tomita, Y., Takayama, R., and Ueda, I., J. Appl. Phys., 60, 361 (1986).Google Scholar
3. Yamamoto, T., Igarashi, H., and Okazaki, K., J. Amer. Ceram. Soc., 54, 1 (1971).Google Scholar
4. Iijima, K., Takayama, R., Tomita, Y., and Ueda, I., J. Appl. Phys., 60, 2914 (1986).Google Scholar
5. Teowee, G., Boulton, J. M., and Uhlmann, D. R., Mat. Res. Soc. Symp. Proc., 271, 345 (1992).Google Scholar
6. Schwartz, R. W., Tuttle, B. A., Doughtly, D. H., Land, C. E., Goodnow, D. C., Hernandez, C. L., Zender, T. J., and Martinez, S. L., IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 38, 677 (1991).Google Scholar
7. Dey, S. K. and Zuleeg, R., Ferroelectrics,. 112, 309 (1990).Google Scholar
8. Kingery, W. D., Browen, H. K., and Uhlmann, D. R., Introduction to Ceramics 2nd ed. (John Wiley & Sons, Inc., New York, 1976), p. 937 Google Scholar
9. Henning, D. and Hardtl, K. H., Phys. status Solidi(a), 3, 465 (1970).Google Scholar
10. Takayama, R., Tomita, Y., iijima, K., and Ueda, I., J. Appl. Phys., 61, 1666 (1989).Google Scholar
11. Dey, S. K. and Lee, J., IEEE Trans. Elect. Device, 39, 1607 (1992).Google Scholar
12. Teowee, G., Mebes, M. P., Baertein, C. D., Quackenbush, E. L., Kneer, E. A., Boulton, J. M., and Uhlmann, D. R., Integrated Ferroelectrics, 10, 131 (1995).Google Scholar
13. Patel, A., Tossel, D. A., shorrocks, N. M., Whatmore, R. W., and Watton, R., Mat. Res. Soc. Symp. Proc. 310, 53 (1993).Google Scholar