Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T11:37:52.923Z Has data issue: false hasContentIssue false

Pulsed-Laser Deposition and Characterization of Amorphous Diamondlike Carbon Films

Published online by Cambridge University Press:  22 February 2011

Y. Huai
Affiliation:
lINRS-Énergie et Matéiauz, 1650, montée Ste-Julie, C. P. 1020, Varennes, Québec, CanadaJ3X 1S2
J. N. Broughton
Affiliation:
lINRS-Énergie et Matéiauz, 1650, montée Ste-Julie, C. P. 1020, Varennes, Québec, CanadaJ3X 1S2
M. Chaker
Affiliation:
lINRS-Énergie et Matéiauz, 1650, montée Ste-Julie, C. P. 1020, Varennes, Québec, CanadaJ3X 1S2
C. F. M. Borges
Affiliation:
Département de Physique, Université de Montréal, C.P. 6128, Succ. A, Montrédal, Québec, H3C 3J7
Y. Beaudoin
Affiliation:
lINRS-Énergie et Matéiauz, 1650, montée Ste-Julie, C. P. 1020, Varennes, Québec, CanadaJ3X 1S2
H. PÉpin
Affiliation:
lINRS-Énergie et Matéiauz, 1650, montée Ste-Julie, C. P. 1020, Varennes, Québec, CanadaJ3X 1S2
M. Moisan
Affiliation:
Département de Physique, Université de Montréal, C.P. 6128, Succ. A, Montrédal, Québec, H3C 3J7
Get access

Abstract

Unhydrogenated amorphous carbon films were deposited by KrF pulsed laser ablation of graphite under a laser power density of 8×108 W/cm2. The films were characterized using x-ray reflectivity, optical transmittance, spectroscopic ellipsometry and Raman spectroscopy. The physical, optical and bonding properties of the films have been investigated in detail as functions of substrate temperatures Ts (22-300°C) and post-annealing temperatures. Films deposited at Ts, <200°C possessed diamond-like properties with mass densities p=2.8-3.1 g/cm3 and optical bandgaps Eg,=1.5-2.2 eV. Above Ts,=200°C, the films showed typical graphite characteristics. The diamond-like films annealed at temperatures up to 750°C show excellent thermal stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Deshpandey, C. V. and Bunshah, R. F., J. Vac. Sci. Technol. A 7, 2294 (1989).Google Scholar
[2] Wang, C. Z. and Ho, K. M., Phys. Rev. Lett. 71, 1184 (1993).Google Scholar
[3] Kumar, N., Xie, C., Potte, N., Krishnan, A., Hilbert, C., Eichman, D., Schlam, E., Schmidt, H., and Wagal, S., SID 93 Digest, 1009 (1993).Google Scholar
[4] Collins, C. B., Davanloo, F., Lee, T. J., Park, H., and You, J. H., J. Vac. Sci. Technol. B 11, 1936 (1993).Google Scholar
[5] Pappas, D. L., Saenger, K. L., Bruley, J., Krakow, W., Cuomo, J. J., Gu, T., and Collins, R. W., J. Appl. Phys. 71, 5675 (1992); J. J. Cuomo, D. L. Pappas, J. Bruley, J. P. Doyle, and K. L. Saenger, ibid, 70, 1706 (1991).Google Scholar
[6] Xiong, F., Wang, Y. Y., Leppert, V., and Chang, R. P. H., J. Mater. Res., 8, 2265 (1993).Google Scholar
[7] Huai, Y., Chaker, M., Broughton, J. N., Gat, E., Pöpin, H., Gu, T., Bian, X., and Sutton, M., submitted to Appl. Phys. Lett..Google Scholar
[8] Heald, S. M. and Nielsen, B., J. Appl. Phys. 72, 4669 (1992); C. A. Lucas, T. D. Nguyen, and J. B. Kortright, Appl. Phys. Lett. 59, 2100 (1991).Google Scholar
[9] Chen, H. and Heald, S. M., J. Appl. Phys. 66, 1793 (1989).Google Scholar
[10] Huai, Y., Cochrane, R. W., and Sutton, M., Phys. Rev. B 48, 2568 (1993).Google Scholar
[11] Tamor, M. A. and Wu, C. H., J. App. Phys. 67, 1007 (1993).Google Scholar
[12] Forouhi, A. R., and Bloomer, I., Phys. Rev. B 34, 7018 (1986).Google Scholar
[13] Huai, Y., Broughton, J. N., and Chaker, M., unpublished.Google Scholar
[14] Dillon, R. O., J, A. Woollam, and Katkanard, V., Phys. Rev. B 29, 3482 (1984).Google Scholar
[15] Bhushan, B., Kellock, A. J., Cho, N. H., and Ager, W. A., J. Mater. Res. 7, 404 (1992).Google Scholar