Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-19T01:25:14.342Z Has data issue: false hasContentIssue false

Pulsed Laser Deposition of (Sr1-xCa)RuO3 and Sr(Ru1-xTix)O3 Thin Films by Sequential Multilayer Process

Published online by Cambridge University Press:  15 February 2011

L. Mffiville
Affiliation:
E.L. Ginzton Laboratory, Stanford University, Stanford, CA 94305–4085
L. Antognazza
Affiliation:
Conductas, 969 West Maude Avenue, Sunnyvale, CA 94086
K. Char
Affiliation:
Conductas, 969 West Maude Avenue, Sunnyvale, CA 94086
T. H. Geballe
Affiliation:
E.L. Ginzton Laboratory, Stanford University, Stanford, CA 94305–4085
Get access

Abstract

We report on the growth and properties of (Sr1-xCax)Ru03 and Sr(Ru1-xTix)O3 thin films obtained by pulsed laser deposition. A sequential deposition of sub-monolayers from SrTiO3 and CaRuO3 end members has been successfully used to substitute Ca- and Ti- in the SrRuO3 perovskite structure. Magnetization measurements as well as transport properties exhibit very different behavior for each type of substitution. In the case of Ca- substituted samples, the resistivity remains metallic and is consistent with the expected behavior for intermediate compositions. A progressive reduction of the Curie temperature with higher doping is reported. In the case of Ti- substituted samples, we observe a stronger reduction of the Curie temperature and remanent magnetization with increasing Ti substitution. Resistivity as a function of temperature shows a crossover from metallic to semiconducting behavior with variable range hopping process for a high level of Ti doping and points out the clear differences between the two substitutions sites. In both cases, the observed reduction of the magnetization with increasing doping concentration can be well described by assuming a random distribution of substituted sites in the perovskite structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Antognazza, L., Triscone, J.-M., Branner, O., Miéville, L., Karkut, M. G., and Fischer, O., J. Less-Common Met. 164–165, 344 (1990).Google Scholar
2. Boyce, J. B., Connell, G. A. N., Fork, D. K., Fenner, D. B., Char, K., Ponce, F. A., Bridges, F., Tramontana, J., Viano, A. M., Laderman, S. S., Taber, R. C., Tahara, S., and Geballe, T. H., in Processing of Films for High Tc Superconducting Electronics, edited by Venkatesans, T. (SPIE, 1989), vol. 1187, pp. 136.Google Scholar
3. Gupta, A., Macey, B., Hervían, H., and Raveau, B., Chem. Mater. 6, 7 (1994).Google Scholar
4. Goodenough, J. B. and Longo, J. M., in Landolt-Boernstein New Series, edited by Hellwege, K. H. (Springer Verlag, Berlin, 1970), vol. III/4a, pp. 224.Google Scholar
5. Kanbayasi, A., J. Phys. Soc. of Japan 44, 108 (1978).Google Scholar
6. Cao, G., McCall, S., Shepard, M., Crow, J. E., and Guertin, R. P., Submitted to PRB, (1997).Google Scholar
7. Miéville, L., Geballe, T. H., Antognazza, L., and Char, K., Appl. Phys. Lett. 70, 126 (1997).Google Scholar
8. Mott, N., Conduction in non-crystalline Materials (Oxford Press, 1993).Google Scholar
9. Jaccarino, V. and Walker, L. R., Phys. Rev. Lett. 15, 258 (1965).Google Scholar
10. Gibb, T.C., Greatrex, R., Greenwood, N. N., Puxley, D. C, and Snowdon, K. G., J. Solid State Chem. 11, 17 (1974).Google Scholar
11. Fukunaga, F. and Tsuda, N., J. Phys. Soc. Jpn. 63, 3798 (1994).Google Scholar
12. Cho, J. H., Jia, Q. X., Wu, X. D., Foltyn, S. R., and Maley, M. P., Phys. Rev. B 54, 37 (1996).Google Scholar
13. Perrier, J.-P., Tissier, B., and Tournier, R., Phys. Rev. Lett. 24, 313 (1970).Google Scholar
14. Meservey, R. and Tedrow, P. M., Physics Reports 238, 173 (1994).Google Scholar