Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-11T08:37:10.527Z Has data issue: false hasContentIssue false

Pulsed Ion-Beam Induced Reactions of Ni And Co With Amorphous and Single Crystal Silicon

Published online by Cambridge University Press:  25 February 2011

J. O. Olowolafe*
Affiliation:
Department of Materials Science, Cornell University Ithaca, New York 14853
R. Fastow
Affiliation:
Department of Materials Science, Cornell University Ithaca, New York 14853
*
*Department of Physics, University of lie, Ile-Ife, Nigeria
Get access

Abstract

Thin layers (~1,000 A ) of Ni and Co have been reacted with both (100) and amorphous silicon (a-Si) using a pulsed ion beam. Samples were analyzed using Rutherford backscattering, x-ray diffraction, and transmission electron microscopy. Rutherford backscattering showed that the metal/a-Si and metal/(100)-Si reaction rates were comparable. Both reactions began at the composition of the lowest eutectic. For comparison. furnace annealing of the same structures showed that the reaction rate of Ni with amorphous silicon was greater than with (100) Si; Co reacted nearly identically with both substrates. Diffraction data suggest that pulsed ion beam annealing crystallizes the amorphous silicon before the metal/a-Si reaction begins.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Olowolafe, J.O., Nicolet, M-A., and Mayer, J.W., Thin Solid Films, 38(1976).Google Scholar
2. Cheung, N.. Lau, S.S., Nicolet, M-A.. and Mayer, J.W., Proc. Svmp. on Thin Film Interfaces and Interactions , edited by Baglin, J.E.E., Poate, J.M. (Electrochemical Society, Princeton, N.J. 1980 )vol80–2. p.494.Google Scholar
3. Lien, C.-D., Nicolet, M-A., and Lau, S.S., Phys. Stat. Sol.(a) 123(1984).Google Scholar
4. Lien, C.-D., Nicolet, M -A., and Lau, S.S., Appl. Phys. A 34, 249251(1984).Google Scholar
5. Hung, L.S., Gyulai, J., Mayer, J.W., Lau, S.S., Nicolet, M-A., J. Appl. Phys. 54, 5076(1983).Google Scholar
6. Wu, C.S., Lau, S.S., Kuech, T.F., Liu, B.X., Thin Solid Films 104, 175(1983).Google Scholar
7. Lien, C.-D., Nicolet, M-A., Lau, S.S., Appl. Phys. A (in press, 1984).Google Scholar
8. Fastow, R., Mayer, J.W., Brat, T., Eizenberg, M., Olowolafe, J.O., (submitted for publication in Appl. Phys. Lett.).Google Scholar
9. Brat, T., Eizenberg, M., Fastow, R., Palmstrom, C.J., Mayer, J.W., Journal of Applied Physics (accepted for publication).Google Scholar
10. Baglin, J.E.E.. Hodgson, R.T., Chu, W.K., Neri, J.M., Hammer, D.A., Chen, J.J., I.B.M. Research Report (3/31/81).Google Scholar
11. Palmstrom, C.J. and Fastow, R., Laser- Interactions and Thermal Processing of Materials, edited by Narayan, J., Brown, W.L., Lemmons, R.A., Materials Research Society, North Holland Publishing Co. (1982). p.715.Google Scholar
12. Fastow, R. (to be published).Google Scholar
13. Fastow, R.. Maron, Y., Mayer, J.W., Phys. Rev B. 31 (1985).Google Scholar
14. Tu, K.N. and Mayer, J.W., Thin Films- Interdiffusion and Reactions, edited by Poate, J.M., Tu, K.N., and Mayer, J.W., Electrochemical Society, John Wiley and Sons, Inc. (1978).Google Scholar
15. Auvert, G., Bensahel, D., Perio, A., Ngruyen, V.T., Rozgonyi, G.A., Appl. Phys. Lett. 39(9), 724(1981).Google Scholar
16. Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G., Chew, N.G., Phys. Rev. Lett. 52(26), 2360(1984).Google Scholar
17. Csepregi, L., Mayer, J.W., and Sigmon, T.W., Phys. Lett. A 54, 157(1975).Google Scholar