Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-26T04:08:36.988Z Has data issue: false hasContentIssue false

Pulse frequency effect on neutron damage in α-Iron:A KMC analysis

Published online by Cambridge University Press:  21 March 2011

J.M. Perlado
Affiliation:
Instituto de Fusiòn Nuclear, Universidad Politécnica de Madrid, Madrid, Spain
D. Lodi
Affiliation:
Instituto de Fusiòn Nuclear, Universidad Politécnica de Madrid, Madrid, Spain
E. Dominguez
Affiliation:
Instituto de Fusiòn Nuclear, Universidad Politécnica de Madrid, Madrid, Spain
F. Ogando
Affiliation:
Instituto de Fusiòn Nuclear, Universidad Politécnica de Madrid, Madrid, Spain
J. Prieto
Affiliation:
Instituto de Fusiòn Nuclear, Universidad Politécnica de Madrid, Madrid, Spain
T. Diaz de la Rubia
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA94550, USA
M. J. Caturla
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA94550, USA
Get access

Extract

The pulsed nature of the irradiation and the high neutron dose are the critical factors in an Inertial Fusion Energy reactor (IFE). The damage that structural materials suffer under these extremes conditions require a careful study and assessment. The goal of our work is to simulate, trough the multiscale modelling approach, the damage accumulation in μ-Fe under conditions relevant to a IFE Reactor. We discuss how the pulse frequency, 1 Hz, 10 Hz, and the dose rate of 10 ⊏2 and 10 ⊏1 dpa/s affect the damage production and accumulation. Results of the damage that this demanding environment can produce on a protected first structural exposed to 150 keV average recoil ion will be presented. A further comparison it has been made with the damage produced by a continuous irradiation at similar average dose.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Moir, R.W. et al. HILIFE II, a molten-salt inertial fusion energy power plant design Final Report, Fusion Technol. 25 (1994) 525 Google Scholar
[2] Perkins, L J. et al. , The investigation of high intensity laser driven micro neutron source for fusion material research at high flux, Nuclear fusion 40/N.1 (2000) 119 Google Scholar
[3] Alonso, E., Caturla, M. J., Rubia, T. Diaz de la, Soneda, N., Marian, J., Perlado, J. M. Stoller, R. E. Comparative study of damage accumulation in iron under magnetic and inertial fusion conditions, J. of Nuclear Materials 283–287 (2000) 768772 Google Scholar
[4] Alonso, E., Caturla, M. J., Rubia, T. Diaz de la, Perlado, J.M., J. Nucl. Materials 276 (2000) 221 Google Scholar
[5] Rubia, T. Diaz de la, Soneda, N., Caturla, M. J., Alonso, E., J.Nucl. Materials 251 (1997) 13 Google Scholar
[6] Hogan, W. J., Coutant, J, Nakay, S., Rozanov, V. B., Velarde, G., Energy from inertial fusion IAEA Publications, ISBN 92-0-100794-9Google Scholar
[7] Perlado, J. M., Sanz, J., Neutronics on inertial fusion reactors. Fusion Engineering and Design. 48 (2000) 355370 Google Scholar
[8] Greenwood, L. R., Smither, R. K., SPECTER: neutron damage calculation for materials irradiation, AML/FPP-TM-197, 1985 Google Scholar
[9] Perlado, J. M., Lodi, D., Malerba, L., Marian, J., Salvador, M, Radiation damage of structural materials in inertial fusion energy reacto chambers. IAEA TCM on Physics and technology of inertial fusion energy targets and chambers, Madrid, 7-9 June 2000. To be published as IAEA-Tec doc.Google Scholar
[10] English, C. A., J. Nucl. Mater., 133–134 (1985) 71 Google Scholar
[11] Stoller, R. E., Calder, A.F., Statistical analysis os a library of molecular dynamics cascade simulation in iron at 100 K, J. of Nuclear Materials 283–287 (2000) 746–745Google Scholar
[12] Biersack, J.B., Haggmark, L., Nucl Instrum. And Meth. 194 (1982) 93 Google Scholar
[13] Ghoniem, N. M., J. Nuclear Materials 89 (1980) 359 Google Scholar