Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-12T07:25:05.484Z Has data issue: false hasContentIssue false

Pt/Ti Low Resistance Non-Alloyed Ohmic Contacts to InP-Based Photonic Devices

Published online by Cambridge University Press:  25 February 2011

A. Katz
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
S. N. G. Chu
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
P. M. Thomas
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
W. C. Dautremont-Smith
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Pt/ri low resistance non-alloyed ohmic contacts to p-InP-based contact layers in photonic devices, which were formed by rapid thermal processing (RTP), were studied. E-gun evaporated Pt/Ti metallization deposited onto 1.5· 1019 cm−3 Zn doped In0.53Ga0.47 As yielded the best electrical performance. These contacts were ohmic as deposited with a specific contact resistance value of 3.0 · 10−4 Ωcm2. RTP at higher temperatures led to decrease of the specific contact resistance to 3.4 · 10−8 Ωcm2 (0.08Ωmm) as a result of heating at 450°C for 30 sec. This heat treatment caused only a limited interfacial reaction (about 20 nm thick) between the Ti and the InGaAs, resulted in a thermally stable contact and induced tensile stress of 5.6 · 109 dyne · cm−2 at the metal layer but without degrading the adhesion. Heating at temperatures higher than 500°C resulted in an extensive interaction and degradation of the contact.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goodwin, A. R., Davies, I. G. A., Gibb, R. M. and Murphy, R. H., J. Lightwave Tech. 9, 1424 (1988).CrossRefGoogle Scholar
2. Katz, A., Dautremont-Smith, W. C., Thomas, P. M., Koszi, L. A., Lee, J. W., Riggs, V. G., Brown, R. L., Zilko, J. L., Lahav, A., to be published, J. Appl. Phys.Google Scholar
3. Kaumans, R., Grote, N., Bach, H. G. and Fidorra, F., Proc. 14th GaAs and related compounds, 4, 501 (1988).Google Scholar
4. Temkin, H., Chin, A. K. and Digiuseppe, M. A., Elect. Lett. 19, 70 (1981).Google Scholar
5. Sze, S. M., Physics of Semiconductor Devices, p. 304, J. Wiley, New York (1981).Google Scholar
6. Mead, C. A. and Spitzer, W. G., Phys. Rev. 124, A 173 (1964).Google Scholar
7. Woodall, J. W., Freeouf, J. L., Pettit, G. D., Jackson, T. J. and Kirchner, P., J. Vac. Sci. Technol. 19, 626 (1981).Google Scholar
8. Yu, A. Y. C., Solid State Electron 13, 239 (1970).CrossRefGoogle Scholar
9. Nittono, T., Ito, H., Nakajima, O. and Ishibashi, T., Jap. J. Appl. Phys. 25, 865 (1987).CrossRefGoogle Scholar
10. Jujii, T., Inata, T., Ishii, K., Hiyamizu, S., Electron Lett. 22, 191 (1986).Google Scholar
11. Long, J. A.. Riggs, V. G. and Johnson, W. D. Jr., J. Cryst. Growth, 69, 10 (1984).Google Scholar
12. Nakajima, K., GaInAsP Alloy Semiconductors, pp. 4360, J. Wiley, New York (1982).Google Scholar
13. Reeves, G. K. and Harrison, H. B., IEEE Elec. Dev. Lett. 5, 111 (1982).Google Scholar
14. Amaan, M. C. and Franz, G., J. Appl. Phys. 62, 1541 (1987).Google Scholar
15. Keramidas, V. G., Temkin, H. and Mahajan, S., Inst. Phys. Conf. Ser. 56, 293 (1981).Google Scholar