Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-17T19:49:27.120Z Has data issue: false hasContentIssue false

Proton Transfer in Perfluorosulfonic Acid Functionalized Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Bradley F Habenicht
Affiliation:
bhabenic@utk.edu, University of Tennessee, Chemical & Biomolecular Engineering, Knoxville, Tennessee, United States
Stephen J Paddison
Affiliation:
spaddison@utk.edu, University of Tennessee, Chemical & Biomolecular Engineering, Knoxville, Tennessee, United States
Mark Tuckerman
Affiliation:
mark.tuckerman@nyu.edu, New York, Chemistry, New York, New York, United States
Get access

Abstract

Proton dissociation and transfer are investigated with ab initio molecular dynamics (AIMD) simulations of carbon nanotubes (CNT) functionalized with perfluorosulfonic acid (-CF2SO3H) groups with 3 H2O/–SO3H. The CNT systems were constructed both with and without fluorine atoms covalently bound to the inner walls to determine the effects of the presence of fluorine on proton dissociation, hydration, and stabilization. The results of the AIMD trajectories show that decreasing the separation of sulfonic acid groups increases the propensity for proton dissociation. The simulations also revealed that the dissociated proton was preferentially stabilized as a hydrated hydronium (H3O+) cation in the CNT systems with the fluorine. This feature is attributed to the fluorine atoms providing a localized negative charge that promotes hydrogen bonding of the water molecules coordinated to the central hydronium ion. The hydrated H3O+ ion differed from a traditional Eigen cation (H9O4+) as it donated hydrogen bonds to sulfonate oxygen atoms, as well as water molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kreuer, K. D. J. Membr. Sci. 2001, 185, 2939.Google Scholar
2 Hamrock, S. J.; Yandrasits, M. A. Polym. Rev. 2006, 46, 219244.Google Scholar
3 Elliott, J. A.; Paddison, S. J. Phys. Chem. Chem. Phys. 2007, 9, 26022618.Google Scholar
4 Paddison, S. J.; Paul, R.; Zawodzinski, T. A. J. Electrochem. Soc. 2000, 147, 617626.Google Scholar
5 Paddison, S. J.; Paul, R.; Zawodzinski, T. A. J. Chem. Phys. 2001, 115, 77537761.Google Scholar
6 Paul, R.; Paddison, S. J. J. Chem. Phys. 2005, 123, 224704.Google Scholar
7 Petersen, M. K.; Voth, G. A. J. Phys. Chem. B 2006, 110, 1859418600.Google Scholar
8 Devanathan, R.; Venkatnathan, A.; Dupuis, M. J. Phys. Chem. B 2007, 111, 80698079.Google Scholar
9 Devanathan, R.; Venkatnathan, A.; Dupuis, M. J. Phys. Chem. B 2007, 111, 1300613013.Google Scholar
10 Hristov, I. H.; Paddison, S. J.; Paul, R. J. Phys. Chem. B 2008, 112, 29372949.Google Scholar
11 Eikerling, M.; Paddison, S. J.; Pratt, L. R.; Zawodzinski, T. A. Chem. Phys. Lett. 2003, 368, 108114.Google Scholar
12 Hayes, R. L.; Paddison, S. J.; Tuckerman, M. E. J. Phys. Chem. B 2009, 113, 1657416589.Google Scholar
13 Kresse, G.; Hafner, , J. Phys. Rev. B 1993, 47, 558561.Google Scholar
14 Kresse, G.; Furthmuller, , J. Phys. Rev. B 1996, 54, 1116911186.Google Scholar
15 Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 38653868.Google Scholar
16 Blochl, P. E. Phys. Rev. B 1994, 50, 1795317979.Google Scholar
17 Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 17581775.Google Scholar
18 Kent, P. R. C. J. Phys. Conf. Ser. 2008, 012058.Google Scholar
19www.nics.tennessee.eduGoogle Scholar
20 Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. Nature 1999, 397, 601604.Google Scholar
21 Ojamae, L.; Shavitt, I.; Singer, S. J. Int. J. Quantum Chem. 1995, Suppl. 29, 657668.Google Scholar