Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-08T15:42:06.770Z Has data issue: false hasContentIssue false

Properties of Tetrahedral Amorphous Carbon Deposited by A Filtered Cathodic Vacuum ARC

Published online by Cambridge University Press:  15 February 2011

M Chhowalla
Affiliation:
Dept of Engineering, Cambridge University, Cambridge C02 1PZ, UK.
C W Chen
Affiliation:
Dept of Engineering, Cambridge University, Cambridge C02 1PZ, UK.
B Kleinsorge
Affiliation:
Dept of Engineering, Cambridge University, Cambridge C02 1PZ, UK.
J Robertson
Affiliation:
Dept of Engineering, Cambridge University, Cambridge C02 1PZ, UK.
G A J Amaratunga
Affiliation:
Dept of Engineering, Cambridge University, Cambridge C02 1PZ, UK.
W I Milne
Affiliation:
Dept of Engineering, Cambridge University, Cambridge C02 1PZ, UK.
Get access

Abstract

The properties of a highly sp3 bonded form of amorphous carbon denoted ta-C deposited from a filtered cathodic vacuum arc (FCVA) are described as a function of ion energy and deposition temperature. The sp3 fraction depends strongly on ion energy and reaches 85% at an ion energy of 100 eV. Other properties such as density and band gap vary in a similar fashion, with the optical gap reaching a maximum of 2.3 eV. These films are very smooth with area roughness of order 1 nm. The sp3 fraction falls suddenly to almost zero for deposition above about 200°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Robertson, J., Prog Solid State Chem 21 199 (1991);Pure Applied Chem 66 1789 (1994)Google Scholar
2. Lifshitz, Y., Kasi, S. R., Rabalais, J. W., Phys Rev Lett 68 620 (1989)Google Scholar
3. Voevodin, A A et al, J Appi Phys. 78 4123 (1995)Google Scholar
4. McKenzie, D R, Muller, D, Pailthorpe, B A, Phys Rev Lett 67 773 (1991)Google Scholar
5. Fallon, P J, Veerasamy, V S, Davis, C A, Robertson, J, Amaratunga, G, Milne, W I, Koskinen, J, Phys Rev B 48 4777 (1993)Google Scholar
6. Chhowalla, M, Robertson, J, Chen, C W, Amaratunga, G A J, J Appl Phys (1996)Google Scholar
7. Grossman, E, Lempert, G, Kulik, J, Lifshitz, Y, App Phys Lett 68 1214 (1996)Google Scholar
8. Weiler, M, Sattel, S, Jung, K, Ehrhardt, H, Veerasamy, V S, Robertson, J, Appl Phys Lett 64 2797 (1994); Phys Rev B 53 1594 (1996)Google Scholar
9. Kleber, R, et al, Thin Solid Films 205 274 (1991)Google Scholar
10. Jarman, R H, Ray, G J, Stadley, R W, Appl Phys Lett 58 592 (1991)Google Scholar
11. Tamor, M A, Vassell, W C, Carduner, K R, Appl Phys Lett 58 592 (1992)Google Scholar
12. Robertson, J, O'Reilly, E P, Phys Rev B 35 2946 (1987)Google Scholar
13. Robertson, J, Diamond Related Mats 4 297 (1995)Google Scholar
14. Lifshitz, Y et al, Phys Rev Lett 72 2753 (1994); Diamond Rel Mats 4 318 (1995)Google Scholar
15. Sattel, S, Weiler, M, Gerber, J, Ehrhardt, H, Diamond Related Mats 4 333 (1995)Google Scholar
16. Robertson, J, Diamond Related Mats 3 361 (1994)Google Scholar
17. Diaz de la Rubia, T, et al, Mat Res Soc Symp Proc 373 555 (1995)Google Scholar