Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T13:41:53.511Z Has data issue: false hasContentIssue false

Properties of Nanophase Materials Synthesized by Mechanical Attrition

Published online by Cambridge University Press:  10 February 2011

H.-J. Fecht
Affiliation:
Technical University Berlin, Institute of Metals Research, Hardenbergstr. 36, PN 2–3, D-10623 Berlin, Germany
C. Moelle
Affiliation:
Technical University Berlin, Institute of Metals Research, Hardenbergstr. 36, PN 2–3, D-10623 Berlin, Germany
Get access

Abstract

Mechanical attrition and mechanical alloying has been developed as a versatile alternative to other processing routes in preparing nanophase materials with a broad range of chemical composition and atomic structure. In this process, lattice defects are produced by “pumping” energy into initially single-crystalline powder particles of typically 50 μm particle diameter. This internal refining process with a reduction of the average grain size by a factor of 103 – 104 results from the creation and self-organization of small-angle and high-angle grain boundaries within the powder particles during the milling process. This microstructural evolution has been characterized by X-ray, neutron and electron scattering methods revealing the grain refinement and increase in internal stress. As a consequence, a change of the thermodynamic, mechanical and chemical properties of these materials has been observed with the properties of nanophase materials becoming controlled by the grain size distribution and the specific atomic structure and cohesive energy of the grain or interphase boundaries. An analysis of the thermal stability of attrited powder specimen gives the grain boundary energy of non-equilibrium and fully relaxed grain boundaries as well as their mobility. In summary, it is expected that the study of mechanical attrition processes in the future not only opens new processing routes for a variety of advanced nanophase materials but also improves the understanding of technologically relevant deformation processes, e.g. surface wear, on a nanoscopic level.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gleiter, H., Prog. Mat. Sci. 33, p. 223 (1989).Google Scholar
2. Mechanical Alloying, edited by Shingu, P.H., Mat. Sci. Forum 88–90 (1992).Google Scholar
3. Koch, C.C., Nanostructured Materials 2, p. 109 (1993).Google Scholar
4. Kehrel, A., Moelle, C. and Fecht, H.J. in Nanophase Materials, edited by Hadjipanayis, G.C. and Siegel, R.W., Kluwer Acad. Publ., 1994, p. 287.Google Scholar
5. Moelle, C. and Fecht, H.J., Nanostructured Materials 3, p. 93 (1993).Google Scholar
6. Zhou, G.F. and Bakker, H., Phys. Rev. Lett. 72, 2290 (1994).Google Scholar
7. Rigney, D.A., Chen, L.H., Naylor, M.G.S. and Rosenfield, A.R., Wear 100, p. 195 (1984).Google Scholar
8. Rigney, D.A., Ann. Rev. Mater. Sci. 18, p. 141 (1988).Google Scholar
9. Kuhn, W.E., Friedman, I.L., Summers, W. and Szegvari, A., ASM Metals Handbook. Vol. 7, Powder Metallurgy, Metals Park (OH) (1985), p.56.Google Scholar
10. Wagner, C.N.J. and Boldrick, M.S., J. Mat. Sci. Engg. A133, p. 26 (1991).Google Scholar
11. Moelle, C., Ph.D. Thesis, Technical University Berlin (1995).Google Scholar
12. Hayter, J.B., J. Appl. Phys. 21, p. 737 (1988).Google Scholar
13. Glatter, O., J. Appl. Cryst. 10, p. 415 (1977).Google Scholar
14. Atkinson, H.H. and Hirsch, P.B., Phil. Mag. 3, p. 213 (1958).Google Scholar
15. Kronmüller, H., Seeger, A. and Wilkens, M., Zeitschrift für Physik 171, p. 291 (1963).Google Scholar
16. Fecht, H.J. in Nanophase Materials, edited by Hadjipanayis, G.C. and Siegel, R.W., Kluwer Acad. Publ., 1994, p. 125.Google Scholar
17. Turley, D., J. Inst. Metals 99, p. 271 (1971).Google Scholar
18. Wagner, C.N. J., Acta Met. 5, p. 477 (1957).Google Scholar
19. Warren, B.E., Prog. Metals Phys. 8, p. 147 (1956).Google Scholar
20. Kuhlmann-Wilsdorf, D. and Van der Merwe, J.H., J. Mat. Sci. Engg. 55, p. 79 (1982).Google Scholar
21. Essmann, U. and Mughrabi, H., Phil. Mag. A 40, p. 40 (1979).Google Scholar
22. Gilman, J.J., J. Appl. Phys. 46, p. 1625 (1975).Google Scholar
23. Donovan, P.E. and Stobbs, W.M., Acta Metall. 31, p. 1 (1983).Google Scholar
24. Hatherly, M. and Malin, A.S., Scripta Metall. 18, p. 449 (1984).Google Scholar
25. Goods, S.M. and Brown, L.M., Acta Metall. 27, p. 1 (1979).Google Scholar
26. Fecht, H.J., Hellstern, E., Fu, Z. and Johnson, W.L., Metall. Trans. A 21, p. 2333 (1990).Google Scholar
27. Fecht, H.J., Hellstern, E., Fu, Z. and Johnson, W.L., Adv. Powder Metallurgy 1, p. Ill (1989).Google Scholar
28. Eckert, J., Holzer, J.C., Krill, C.E. III, and Johnson, W.L., J. Mat. Res. 7, p. 1751 (1992).Google Scholar
29. Fecht, H.J., Phys. Rev. Lett. 65, p. 610 (1990).Google Scholar
30. Johnson, W.L., Prog. Mater. Sci. 30, p. 81 (1986).Google Scholar
31. Bever, M.B., Holt, D.L. and Titchener, A.L., Prog. Mater. Sci. 15, p. 5 (1973).Google Scholar
32. Essmann, U. and Mughrabi, H., Phil. Mag. A 40, p. 40 (1979).Google Scholar
33. Fecht, H.J., Nature 356, p. 133 (1992).Google Scholar
34. Moelle, C. and Fecht, H.J., Nanostructured Materials 6, p. 421 (1995).Google Scholar
35. Tschöpe, A., Birringer, R., Gleiter, H., J. Appl. Phys. 71, p. 5391 (1992).Google Scholar
36. Chen, L.C. and Spaepen, F., J. Appl. Phys. 69, p. 679 (1991).Google Scholar
37. Wolf, D., Phil. Mag. A62, p. 447 (1990).Google Scholar