Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-25T13:59:06.933Z Has data issue: false hasContentIssue false

Properties of LiV308 Cathode Materials Prepared from Gels by Spray-Drying

Published online by Cambridge University Press:  16 February 2011

M. Y. Saidi
Affiliation:
Valence Technology, Inc., 6781 Via Del Oro, San Jose, CA 95119, USA
I. I. Olsen
Affiliation:
Valence Technology, Inc., 6781 Via Del Oro, San Jose, CA 95119, USA
R. Koksbang
Affiliation:
Valence Technology, Inc., 6781 Via Del Oro, San Jose, CA 95119, USA
J. Barker
Affiliation:
Valence Technology, Inc., 6781 Via Del Oro, San Jose, CA 95119, USA
R. Pynenburg
Affiliation:
Valence Technology, Inc., 6781 Via Del Oro, San Jose, CA 95119, USA
K. West
Affiliation:
Department of Physical Chemistry, The Technical University of Denmark DK-2800 Lyngby, Denmark
B. Zachau-Christiansen
Affiliation:
Department of Physical Chemistry, The Technical University of Denmark DK-2800 Lyngby, Denmark
S. Skaarup
Affiliation:
Department of Physical Chemistry, The Technical University of Denmark DK-2800 Lyngby, Denmark
Get access

Abstract

LiV308 powder has been prepared on a large scale by spray drying ofan aqueous gel. The material was further dehydrated at 150 and 350ºC. These materials were characterized by TGA, XRD and electrochemical methods. Materials dried at 150 and 350ºC, showed an unusual high reversible capacity, close to 4 Li per formula unit, and cycle well. The material dried at 350ºC is very similar to the crystalline LiV308 prepared by conventional high temperature synthesis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. West, K., Saidi, Y., Barker, J., Zachau-Christiansen, B., Olsen, I. I., Pynenburg, R., Skaarup, S., and Koksbang, R., Proc. Electrochem. Soc. (1994), in press.Google Scholar
2. Pistoia, G., Pasquali, M., Wang, G., and Li, L., J. Electrochem. Soc., 137 2365 (1990).Google Scholar
3. Koksbang, R., US Patent, 5,334,334 (1994).Google Scholar
4. Koksbang, R., US Patent, 5,326,545 (1994).Google Scholar
5. Wickham, D. G., J. Inorg. Nucl. Chem. 27, 1939 (1965).Google Scholar
6. Wadsley, A.D., Acta Cryst. 10, 261 (1957).Google Scholar
7. Picciotto, L. A. de, Adendorff, K. T., Liles, D. C., Thackeray, M. M., Solid State Ionics, 62, 297 (1993).Google Scholar
8. Schöllhom, R., Klein-Reesink, F., and Reimold, R., J. Chem. Soc. Chem. Comm., 398 (1979).Google Scholar
9. Barker, J., Pynenburg, R., Koksbang, R., J. Power Sources, 52, 185 (1994).Google Scholar
10. West, K., Zachau-Christiansen, B., Landeira, M. J., Jacobsen, T., in “Transport-Structure Relations in Fast Ion and Mixed Conductors”, eds. Poulsen, F. W., Andersen, N. Hessel, Klausen, K., Skaarup, S., Sørensen, O. Toft, 6th Risø International Symposium on Metallurgy and Materials Science, Risø, Denmark, 1985, pp. 265.Google Scholar