Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-26T02:42:54.449Z Has data issue: false hasContentIssue false

Properties of H, O and C in GaN

Published online by Cambridge University Press:  10 February 2011

S. J. Pearton
Affiliation:
University of Florida, Gainesville FL 32611
C. R. Abernathy
Affiliation:
University of Florida, Gainesville FL 32611
J. W. Lee
Affiliation:
University of Florida, Gainesville FL 32611
C. B. Vartuli
Affiliation:
University of Florida, Gainesville FL 32611
J. D. MacKenzie
Affiliation:
University of Florida, Gainesville FL 32611
F. Ren
Affiliation:
AT&T Bell Laboratories, Malibu Hill NJ 07974
R. G. Wilson
Affiliation:
Hughes Research Laboratories, Malibu CA 90265
J. M. Zavada
Affiliation:
US Army Research Laboratory, RTP NC 27709
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185
J. C. Zolper
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185
Get access

Abstract

The electrical properties of the light ion impurities H, O and C in GaN have been examined in both as-grown and implanted material. H is found to efficiently passivate acceptors such as Mg, Ca and C. Reactivation occurs at ≥450°C and is enhanced by minority carrier injection. The hydrogen does not leave the GaN crystal until >800°C, and its diffusivity is relatively high (˜10−11cm2/s) even at low temperatures (<200°C) during injection by wet etching, boiling in water or plasma exposure. Oxygen shows a low donor activation efficiency when implanted into GaN, with an ionization level of 30 - 40 meV. It is essentially immobile up to 1100°C. Carbon can produce low p-type levels (3×1017cm−3) in GaN during MOMBE, although there is some evidence it may also create n-type conduction in other nitrides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Szafranek, I. and Stillman, G. E., J. Appl. Phys. 68 3554 (1990).Google Scholar
2. Tavendale, A. J., Pearton, S. J., Williams, A. A. and Alexiev, D.. Appl. Phys. Lett. 56 1457 (1990).Google Scholar
3. Leitch, A. W. R., Prescha, Th. and Weber, J., Phys. Rev. B. 44 5912 (1991).Google Scholar
4. Pearton, S. J., Corbett, J. W. and Stavola, M., Hydrogen in Crystalline Semiconductors (Springer-Verlag, Heidenberg 1992).Google Scholar
5. Amano, H., Kito, M., Hiramatsu, K. and Akasaki, I., Jap. J. Appl. Phys. 28 1112 (1989).Google Scholar
6. Nakamura, S., Iwasa, N., Senoh, M. and Mukai, T., Jap. J. Appl. Phys. 31 1258 (1992).Google Scholar
7. Stavola, M., Mat. Sci. For. 148/149 251 (1994).Google Scholar
8. Estreicher, S. K., Proc. Symp. Wide Bandgap Semiconductors and Devices, ed. Ren, F. (Electrochem. Soc., Pennington NJ) Vol.95–21 78 (1995).Google Scholar
9. Zolper, J. C., Wilson, R. G., Stall, R. A. and Pearton, S. J., Appl. Phys. Lett. (in press).Google Scholar
10. Abernathy, C. R., MacKenzie, J. D., Pearton, S. J. and Hobson, W. S., Appl. Phys. Lett. 66 1969 (1995).Google Scholar
11. Abernathy, C. R., MacKenzie, J. D., Bharatan, S. A., Jones, K. S. and Pearton, S. J., Appl. Phys. Lett. 66 1632 (1995).Google Scholar
12. Abernathy, C. R., Proc. Symp. Wide Bandgap Semicond. Devices, ed. Ren, F. (Electronchem. Soc. Pennington NJ) Vol.95–21 1 (1995).Google Scholar