Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T04:16:56.311Z Has data issue: false hasContentIssue false

The Properties of Alumina Sintered in a 2.45 GHz Microwave Field.

Published online by Cambridge University Press:  28 February 2011

Mark.C.L. Patterson
Affiliation:
Alcan International Ltd., Kingston Reasearch and Development Centre, 945 Princess Street, Kingston, ONTARIO, K7L 5L9
Robert M. Kimber
Affiliation:
Alcan International Ltd., Kingston Reasearch and Development Centre, 945 Princess Street, Kingston, ONTARIO, K7L 5L9
Prasad S. Apté
Affiliation:
Alcan International Ltd., Kingston Reasearch and Development Centre, 945 Princess Street, Kingston, ONTARIO, K7L 5L9
Get access

Abstract

A method has been developed to reproducibly sinter high purity alumina (>99.8%) to densities in excess of 98% of theoretical. Sintering times of between 6 and 120 minutes have been investigated and a uniform grain structure is only obtained with sintering times greater than 30 minutes.

Microwave sintering produces a product with a smaller, more uniform grain structure witha more narrow size distribution. The alumina is also tougher than the conventionally sintered material.

When scaled—up to sinter batches of 400 grams, an energy consumption of 3.8 kWh/kg is required, which is estimated to be a 90% savings over conventional sinteringin an electric resistance furnace.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schubring, N.W., Tech. Rept., GMR-4471, General Motors Research Laboratory., 1-27, (1983).Google Scholar
2. Tinga, W.R. and Voss, W.A.G., Microwave Power Engineering, Academic Press, New York. (1968).Google Scholar
3. Sutton, W.H., in Microwave Processing of Materials, edited by Sutton, W.H., Brooks, M.H. and Chabinsky, I.J.. (Mater. Res. Soc. Proc., 124, Pittsburgh PA, 1988). pp. 287295.Google Scholar
4. Sutton, W.H., Brooks, M.H. and Chabinsky, I.J.. editors of (Mater. Res. Soc. Proc., 124, Pittsburgh PA, 1988).Google Scholar
5. Berteaud, A.J. and Badot, J.C., J.Microwave Power., 11, (4), 315320, (1976).Google Scholar
6. Sheppard, L., Am.Cer.Soc.Bull., 67, (10), 15561560, (1980).Google Scholar
7. Swain, B., Met.Prog., 134, (3), 7682, (1988).Google Scholar
8. Kimrey, H.D. and Janney, M.A., in Microwave Processing of Materials, edited by Sutton, W.H., Brooks, M.H. and Chabinsky, I.J.. (Mater. Res. Soc. Proc., 124, Pittsburgh PA, 1988). pp. 376.Google Scholar
9. Meek, T.T., Blake, R.D. and Petrovic, J.J., Ceram. Eng. Sci. Proc., 8, (7-8) 861871. (1987).Google Scholar
10. Meek, T.T., Holcomb, C.E. and Dykes, N., J. Mat. Sci. Lett., 6, 10601062, (1987).Google Scholar
11. Varadan, V.K., Ma, Y., Lakhtakia, A. and Varadan, V.V., in Microwave Processing of Materials, edited by Sutton, W.H., Brooks, M.H. and Chabinsky, I.J.. (Mater. Res. Soc. Proc., 124, Pittsburgh PA, 1988). pp. 4557.Google Scholar
12. Janney, M.A. and Kimrey, H.D., in Ceramic Transactions, Ceramic Powder Science, II,B. Edited,Messing, G.L., Fuller, E.R. Jr.,and Hausner, H.. (Am. Cer. Soc., Westerville, OH. 1988). pp. 919924.Google Scholar
13. Oda, S.J. and Balbaa, I.S., in Microwave Processing of Materials, edited by Sutton, W.H., Brooks, M.H. and Chabinsky, I.J.. (Mater. Res. Soc. Proc., 124, Pittsburgh PA, 1988). pp. 303309.Google Scholar
14. Bennison, S.J. and Lawn, B.R., Acta Metall. 37, (10), 26592671, (1989).Google Scholar
15. Dorre, E. and Hubner, H., , Alumina ed., Ilschner, B. and Grant, N.J., (Materials Research and Engineering, Springer-Verlag, 1984).Google Scholar
16. Rice, R.W., Freiman, S.W., Pohanka, R.C., Mecholsky, J.J. Jr and Wu, C.C.., edited by Bradt, R.C., Hasselman, D.P.H. and Lange, F.F.., Fracture mechanics of Ceramics., 4, Plenum Press, 1983), 849876.Google Scholar
17. Rice, R.W., Freiman, S.W.., J.Amer.Ceram.Soc. 64, 350354, (1981).Google Scholar
18. Janaf Thermochemical Tables ed., 2,edited by Stull, D.R. and Prophet, H. et al., US National Bureau of Standards, NSRDS-NBS37, (1971).Google Scholar