Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-30T18:05:37.068Z Has data issue: false hasContentIssue false

Properties of a Novel Amorphous Transparent Conductive Oxide, InGaO3(ZnO)m

Published online by Cambridge University Press:  10 February 2011

M. Orita
Affiliation:
Hosono Transparent ElectroActive Materials, ERATO, JST, KSP C-1232, 3-2-1 Sakado, Kawasaki, 213-0012, JAPAN, orita@team.ksp.or.jp
H. Ohta
Affiliation:
Hosono Transparent ElectroActive Materials, ERATO, JST, KSP C-1232, 3-2-1 Sakado, Kawasaki, 213-0012, JAPAN
M. Hirano
Affiliation:
Hosono Transparent ElectroActive Materials, ERATO, JST, KSP C-1232, 3-2-1 Sakado, Kawasaki, 213-0012, JAPAN
H. Hosono
Affiliation:
Hosono Transparent ElectroActive Materials, ERATO, JST, KSP C-1232, 3-2-1 Sakado, Kawasaki, 213-0012, JAPAN
K. Morita
Affiliation:
R&D center, HOYA corporation, 3-3-1 Musashino, Akishima, 196-8510, JAPAN
H. Tanji
Affiliation:
R&D center, HOYA corporation, 3-3-1 Musashino, Akishima, 196-8510, JAPAN
H. Kawazoe
Affiliation:
Hosono Transparent ElectroActive Materials, ERATO, JST, KSP C-1232, 3-2-1 Sakado, Kawasaki, 213-0012, JAPAN
Get access

Abstract

Novel amorphous transparent conductive oxides, InGaO3(ZnO)m, where m is an integer less than four, was developed. Optical transmittance in the visible region exceeded over 80 % and the electric conductivity at 300 K was as large as 400 S/cm. Both Seebeck and Hall coefficients exhibited negative values, indicating the conduction was n-type. It was suggested that 4s orbital of Zn2+ played a significant role for the formation of the extended state responsible for the conduction, while In3+ acted as a modifier for the stabilization of amorphous state.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bellingham, J.R., Phillips, W.A. and Adkins, C.J., J.Phys.Condens.Matter 2 (1990) 6207.Google Scholar
2 Nozik, A.J., Phys.Rev. B 6 (1972) 453.Google Scholar
3 Yasukawa, M., Hosono, H., Ueda, N. and Kawazoe, H., Jpn.J.AppI.Phys. 34 (1995) L281.Google Scholar
4 Hosono, H., Kikuchi, N., Ueda, N. and Kawazoe, H., Appl.Phys.Lett. 67 (1995) 2663.Google Scholar
5 Hosono, H., Yamashita, Y., Ueda, N. and Kawazoe, H., Appl.Phys.Lett. 68 (1996) 661.Google Scholar
6 Kikuchi, N., Hosono, H., Kawazoe, H., Oyoshi, H. and Hisita, S., J.Am.Ceram.Soc. 80 (1997) 22.Google Scholar
7 Orita, M., Takeuchi, M., Sakai, H. and Tanji, H., Jpn.J.Appl.Phys. 34 (1995) L1550.Google Scholar
8 Orita, M., Sakai, H., Takeuchi, M., Yamaguchi, Y., Fujimoto, T. and Kojima, I., Trans. Mater. Res. Soc. Jpn. 20 (1996) 573.Google Scholar
9 Orita, M., Tanji, H., Mizuno, M., Adachi, H. and Tanaka, I., Phys. Rev. B 61 (2000) 1811.Google Scholar
10 JCPDS card, 40-0255.Google Scholar
11 Marezio, M., Acta Crystallographica 1 (1967) 1948.Google Scholar
12 Shimakawa, K., Narushima, S., Hosono, H. and Kawazoe, H., Phil.Mag.Lett. 79 (1999) 755.Google Scholar
13 Kikuchi, N., Doctoral thesis, Tokyo Institute of Technology (1997).Google Scholar