Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T04:00:20.827Z Has data issue: false hasContentIssue false

Properties and Fracture Resistance of Thin Polycrystalline Aluminum Films on Sapphire Substrates

Published online by Cambridge University Press:  15 February 2011

N. R. Moody
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969.
D. Medlin
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969.
S. Guthrie
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969.
R. Q. Hwang
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969.
K. F. McCarty
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969.
Get access

Abstract

We employed nanoindentation, continuous microscratch testing, and high resolution TEM to determine the effect of structure on the properties and resistance to fracture of thin polycrystalline aluminum films deposited onto single crystal sapphire substrates at 25°C and 250°C. These films had a nominal thickness of 90 nm and a grain size of 160 nm. The elastic and plastic properties were similar for both films. The elastic moduli superimposed, increasing from bulk aluminum values at the surface to sapphire values at the interface. Hardness values also superimposed, but were constant through the film thickness at a value between aluminum and sapphire. In contrast, susceptibility to fracture varied markedly between the films with the 25°C film exhibiting abrupt failure along the film-substrate interface while the 250'C film gave no indication of fracture in the film, along the interface, or in the substrate under the conditions tested.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cao, H. C. and Evans, A. G., Acta Metall. Mater., 39, 2997 (1991).Google Scholar
2 Dalgleish, B. J., Trumble, K. P., and Evans, A. G., Acta Metall., 37, 1923 (1989).Google Scholar
3. Oliver, W. C. and Pharr, G. M., J. Mater. Res., 7, 1564 (1992).Google Scholar
4. Doerner, M. F. and Nix, W. D., J. Mater. Res., 1, 601 (1986).Google Scholar
5. Nix, W. D., Metall. Trans. A, 20A, 2217 (1989).Google Scholar
6. Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., J. Mater. Res., 7, 1126 (1992).Google Scholar
7. Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., Thin Solid Films, 223, 269 (1993).Google Scholar
8. Attardo, M. J., Rutledge, R., and Jack, R. C., J. Applied Physics, 42, 4343 (1971).Google Scholar
9. Fabes, B. D., Oliver, W. C., McKee, R. A., and Walker, F. J., J. Mater. Res., 7, 3056 (1992).Google Scholar
10. Doerner, M. F., Gardner, D. S., and Nix, W. D., J. Mater. Res., 1, 845 (1986).Google Scholar
11. Tabor, D., in The Hardness of Metals (Clarendon, Oxford, 1951) cited by M. F. Doerner, D. S. Gardner, and W. D. Nix, J. Mater. Res., 1, 845 (1986).Google Scholar
12. Bourcier, R. J., Follstaedt, D. M., Dugger, M. T., and Myers, S. M., Nucl. Instr. Methods Phys. Res., B59/60, 905 (1991).Google Scholar
13. Chopra, K. L., Thin Film Phenomena (McGraw-Hill Book Co., New York, NY, 1969).Google Scholar
14. Laugier, M. T., Thin Solid Films, 117, 243 (1984).Google Scholar
15. Agrawal, D. C. and Raj, R., Mater. Sci. Engng., A126, 125 (1990).Google Scholar
16. Benjamin, P. and Weaver, C., Proc. Roy. Soc. London, A252, 516 (1961).Google Scholar
17. Weaver, C., J. Vac. Sci. Technol., 12, 18 (1975).Google Scholar