Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T04:58:57.260Z Has data issue: false hasContentIssue false

Profiling of the Mechanical Properties of Ultralow-k Films Using Nanoindentation Techniques

Published online by Cambridge University Press:  25 March 2011

Holm Geisler
Affiliation:
GLOBALFOUNDRIES Dresden Module One LLC & Co. KG, Wilschdorfer Landstr. 101, D-01109 Dresden, Germany
Ulrich Mayer
Affiliation:
GLOBALFOUNDRIES Dresden Module One LLC & Co. KG, Wilschdorfer Landstr. 101, D-01109 Dresden, Germany
Matthias U. Lehr
Affiliation:
GLOBALFOUNDRIES Dresden Module One LLC & Co. KG, Wilschdorfer Landstr. 101, D-01109 Dresden, Germany
Petra Hofmann
Affiliation:
GLOBALFOUNDRIES Dresden Module One LLC & Co. KG, Wilschdorfer Landstr. 101, D-01109 Dresden, Germany
Hans-Juergen Engelmann
Affiliation:
GLOBALFOUNDRIES Dresden Module One LLC & Co. KG, Wilschdorfer Landstr. 101, D-01109 Dresden, Germany
Get access

Abstract

Several nanoindentation techniques were applied to the surface, the reverse side and cross-sections of PECVD ultralow-k (ULK) film stacks to characterize their elasto-plastic properties quantitatively. Results showed good agreement of the reduced modulus (Er) values measured from above and on cross-sections, respectively. Er decreased by 10-22% from the upper to the lower surface of the films. This gradient suggests that UV light absorption inside the film leads to slightly reduced curing at the rear side of the films compared to the surface of the ULK layers. Both quasi-static nanoindentation and dynamic mechanical mapping showed this trend. It is demonstrated that quantitative mechanical mapping can be performed with a lateral resolution ≤ 100nm. Slight local variations of Er were detected on ULK/SiCxNy films stacked on top of Cu-low-k interconnect structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maex, K., Baklanov, M. R., Shamiryan, D., Iacopi, F., Brongersma, S., and Yanovitskaya, Z. S., J. Appl. Phys. 93, 8793 (2003).Google Scholar
2. Kim, T.-S., Tsuji, N., Kemeling, N., Matsushita, K., Chumakov, D., Geisler, H., Zschech, E., and Dauskardt, R. H., J. Appl. Phys. 103, 064108 (2008).Google Scholar
3. Geisler, H., Adam, T., Zienert, I., Engelmann, H.-J., and Zschech, E., “Mechanical Characterization Techniques for Cu/low-k Structures and their Importance for Chip Packaging”, Advanced Metallization Conference 2004, ed. Erb, D., Ramm, P., Masu, K., and Osaki, A., (MRS, Warrendale, PA, 2005) pp. 4753.Google Scholar
4. Iacopi, F., Brongersma, S. H., Vandevelde, B., O´Toole, M., Degryse, D., Travaly, Y., and Maex, K., Microelectronic Engineering 75, 5462 (2004).Google Scholar
5. Wang, L., Ganor, M., Rokhlin, S.I., and Grill, A., J. Mater. Res. 20, 20802093 (2005).Google Scholar
6. King, R. B., Int. J. Solids Structures 23, 16571664 (1987).Google Scholar
7. Schwarzer, N., Phil. Mag. 86, 51795197 (2006).Google Scholar
8. Hay, J., J. Mater. Res. 24, 667677 (2009).Google Scholar
9. Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 15641583 (1992).Google Scholar
10. Syed Asif, S. A., Wahl, K. J., Colton, R. J., and Warren, O. L., J. Appl. Phys. 90, 11921200 (2001).Google Scholar