Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-25T16:16:19.539Z Has data issue: false hasContentIssue false

Production of Molecular Clusters of Lithium Niobate by Ultraviolet and Visible Laser Ablation

Published online by Cambridge University Press:  25 February 2011

R. F. Haglund
Affiliation:
Haglund and Tang Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
K. Tang
Affiliation:
Haglund and Tang Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
C. H. Chen
Affiliation:
Chen Chemical Physics Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

We have investigated laser ablation of molecular ions from the ferroelectric LiNbO3 at 532, 355 and 266 nm, comparing the effects of changing wavelength and intensity. The time-of-flight spectra show great sensitivity to the onset of plasma formation. Just below the plasma formation threshold, production of the monomer, dimer and trimer negative molecular ions were observed. Possible implications for thin-film deposition processing are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.For recent examples of laser ablation in thin-film deposition, see proceedings of the spring 1990 meeting of the European Materials Research Society, eds. Boyd, I. W., Fogarassy, E. and Stuke, M., Appl. Surf. Sci. 46 (1990).Google Scholar
2.A brief search of several relevant journals turned up two papers: one describing excimerlaser-ablation assisted deposition of PbTiO3, by Tabata, H. et al. , Appl. Phys. Lett. 59 (1991) 2354; and another describing deposition of BaTiO3 using a pulsed ruby laser, by S. B. Ogale et al., Ferroelectrics 102 (1990) 85.Google Scholar
3. Haglund, R. F. Jr, Tang, K., Affatigato, M. and Chen, C. H., Proceedings of the CLEOQELS 1991, OSA Technical Digest Series 10 (1991) 258.Google Scholar
4. Haglund, R. F. Jr, Affatigato, M., Arps, J. H., Tang, K., Niehof, A. and Heiland, W., Proc. MRS 201 (1991) 527.Google Scholar
5. Nakai, Y., Hattori, K., Okano, A., Itoh, N. and Haglund, R. F. Jr, Nucl. Instrum. Methods in Phys. Res. B 58 (1991).Google Scholar
6. Weiss, R. S. and Gaylord, T. K., Appl. Phys. A 37 (1985) 191203.Google Scholar
7. Lines, M. E., Phys. Rev. B 41 (1990) 33723382.Google Scholar
8. Schirmer, O. F., Thiemann, O. and Wöhlecke, M., J. Phys. Chem. Solids 52 (1991) 185.Google Scholar
9. Redfield, D. and Burke, W. J., J. Appl. Phys. 45 (1974) 4566.Google Scholar
10. Haglund, R. F. Jr, Arps, J. H., Affatigato, M., Tang, K., Niehof, A. and Heiland, W., Nucl. Instrum. Meth. in Phys. Research B, in press.Google Scholar