Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-30T12:36:14.585Z Has data issue: false hasContentIssue false

Production of Hollow Microspheres for Inertial Confinement Fusion Experiments

Published online by Cambridge University Press:  15 February 2011

Robert Cook*
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551.
Get access

Abstract

The targets used in inertial confinement fusion (ICF) experiments at the Lawrence Livermore National Laboratory are plastic capsules roughly 0.5 mm in diameter. This paper reviews the fabrication of these capsules, focusing on the production of the thinwalled polystyrene microshell mandrel around which the capsule is built. The relationship between the capsule characteristics, especially surface finish, and capsule performance is discussed, as are the methods of surface characterization and modification necessary for experiments designed to study the effects of surface roughness on implosion dynamics. Targets for the next generation of ICF facilities using more powerful laser drivers will have to be larger while meeting the same or even more stringent symmetry and surface finish requirements. Some of the technologies for meeting these needs are discussed briefly.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Charatis, G., Downward, J. G., Goforth, R. R., Guscott, B., Henderson, T. M., Hildum, J. S., Johnson, R. R., Moncur, N. K., Leonard, T. A., Mayer, F. J., Segall, S. B., Siebert, L. D., Solomon, D. E., and Thomas, C. E., Proceedings of the Fifth International Atomic Energy Agency Conference on Plasma Physics and Controlled Nuclear Fusion Research, (IAEA, Vienna, 1975), vol. II, pp 317–335.Google Scholar
2. Campbell, J. H., Grens, J., and Poco, J., “Preparation and Properties of Hollow Glass Microspheres for use in Laser Fusion Experiments,” Lawrence Livermore National Laboratory, Livermore, CA, UCRL-53516 (1984).Google Scholar
3. Campbell, J. H., Grens, J., and Poco, J. F., “Preparation and Properties of Poly(vinyl alcohol) Microspheres,” Lawrence Livermore National Laboratory, Livermore, CA, UCRL-53750 (1986).Google Scholar
4. Letts, S. A., Myers, D. W., and Witt, L. A., J. Vac. Sci. Technol. 19, 739 (1981).Google Scholar
5. Lim, F. and Soane, D., unpublished work.Google Scholar
6. Hauer, A., Cowan, R. D., Yaakobi, B., 0. Barnouin, and Epstein, R., Phys Rev. A 34, 411 (1986).Google Scholar
7. Cook, R., Overturf, G. E. III, Buckley, S. R., and McEachern, R., J. Vac. Sci. Technol. A 12, 1275 (1994).Google Scholar
8. Ditrich, T. R., Hammel, B. A., Keane, C. J., McEachern, R., Turner, R. E., Haan, S. W., and Suter, L. J., Phys. Rev. Lett. 73, 2324 (1994).Google Scholar
9. Cook, R. C., Overturf, G. E. III, and Buckley, S. R., ICF Quarterly 1, 135 (1991), Lawrence Livermore National Laboratory, Livermore, CA, UCRL-105821-91–4.Google Scholar
10. Cook, R. C., ICF Quarterly 1, 47 (1991), Lawrence Livermore National Laboratory, Livermore, CA, UCRL-105821-91–2.Google Scholar
11. Cook, R. C., Buckley, S. R., and Overturf, G. E. III, ICF Quarterly 2, 7 (1992), Lawrence Livermore National Laboratory, Livermore, CA, UCRL-105821-92–1.Google Scholar
12. Haan, S. W., Phys. Rev. A 39, 5812 (1989).Google Scholar
13. McEachern, R. L., Moore, C. E., and Wallace, R. J., J. Vac. Sci. Technol., Proceedings of the 41st National Symposium, 1994, (submitted). See also ref. 7.Google Scholar
14. Wallace, R. J., McEachern, R. L., and Wilcox, W. W., ICF Quarterly Report, 4, 79, Lawrence Livermore National Laboratory, Livermore, CA UCRL-LR-105821-94–3 (1994).Google Scholar
15. Norimatsu, T., Kato, Y., Nakai, S., and Kubo, U., J. Vac. Sci. Technol. A7, 1165 (1989).Google Scholar
16. Boone, T., Cheung, L., Nelson, D., Soane, D., Wilemski, G., and Cook, R., “Modeling of Microencapsulated Polymer Shell Solidification,” this volume.Google Scholar
17. Yu. Merkuliev, A., Dorogotovtsev, V. M., Tolokonnikov, S. M., Akunets, A. A., Bushnev, V. S., Gromov, A. I., Isakov, A. I., Nikitenko, A. I., Startsev, S. A., and Cook, R. C., “Study of the Production and Quality of Large (1–2 mm) Polystyrene Hollow Microspheres,” this volume.Google Scholar
18. Letts, S. A., Fearon, E. M., Buckley, S. R., Saculla, M. D., Allison, L. M., and Cook, R. C., “Preparation of Hollow Shell ICF Targets Using a Depolymerizable Mandrel,” this volume.Google Scholar
19. Takagi, M., Kobayshi, Y., Norimatsu, T., Izawa, Y., and Nakai, S., “High Yield Fabrication of Uniform, Large Diameter Foam Shells for Laser Fusion Targets Using Polymerization by Photo Initiation with UV Light,” presented at the American Vacuum Soiety 41st National Symposium, October 2428, 1994, Denver, Colorado.Google Scholar
20. Overturf, G. E. III, Cook, R., Reibold, B., and Schroen-Carey, D., “Hollow Foam Microshells for Liquid-Layering Cryogenic ICF Experiments,” presented at the American Vacuum Soiety 41st National Symposium, October 2428, 1994, Denver, Colorado; to be submitted to J. Vac. Sci. Technol.Google Scholar
21. Takagi, M., Norimatsu, T., Izawa, Y., and Nakai, S., Development of Low Density, Low Atomic Number Foam Shell with Gas Barrier for Laser Fusion Target,” this volume.Google Scholar