Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-08T13:19:11.349Z Has data issue: false hasContentIssue false

Production and Characterization of Nanostructured Ti-Based Intermetallics

Published online by Cambridge University Press:  10 February 2011

H. A. Calderónt
Affiliation:
Instituto Politécnico Nacional, México D.F. 07738, calderon@andromeda.esiqie.ipn.ms.
V. Garibay-Febles
Affiliation:
Instituto Politécnico Nacional, México D.F. 07738, calderon@andromeda.esiqie.ipn.ms.
A. Cabrera
Affiliation:
Instituto Politécnico Nacional, México D.F. 07738, calderon@andromeda.esiqie.ipn.ms.
M. Umemoto
Affiliation:
Production Systems Engineering, Toyohashi University of Technology, Tempakucho, Toyohashi, Aichi, 441 Japan.
J. G. Cabañas-Morenol
Affiliation:
Instituto Politécnico Nacional, México D.F. 07738, calderon@andromeda.esiqie.ipn.ms.
K. Tsuchiya
Affiliation:
Production Systems Engineering, Toyohashi University of Technology, Tempakucho, Toyohashi, Aichi, 441 Japan.
Get access

Abstract

Mechanical alloying and plasma assisted sintering are used to produce nanocrystalline Ti-Al alloys. Microstructural characterization and measurement of mechanical properties are reported. The alloys investigated include AITi+X and Al3Ti+X where X represents either Cr, Mn or Fe. Mechanical alloyed powders have a microstructure, which consist of an amorphous matrix containing small crystalline domains. Sintered specimens have a crystalline microstructure with nano-sized grains. Alloys based on AlTi-X are composed mainly of the phases α 2 (DO19) and γ (Ll0) distributed homogeneously in the form of nanograins (100–300 nm) resembling a globular structure. Al3Ti-X alloys show a cubic ordered phase (L12) with grain sizes ranging from 16 to 40 nm. Vickers hardness measurements of sintered alloys show a considerable increase with respect to as-cast alloys. Compression tests show a high mechanical strength of these alloys, although in the case of A13Ti-X, no ductility is found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, L. and Wu, J., Scripta Mater; Vol.35, No. 3, pp 355360, (1996).CrossRefGoogle Scholar
2. Suryanarana, C., Li, W. and Froes, F.H., Scripta Metall. et Mater., 24, p. 2190, (1990).Google Scholar
3. Nash, P., Kim, H., Choo, H, Ardly, H and Hwang, S.J. and Nash, A.S., Mater. Sci. Forum, Vols.88/90, pp. 603610, (1992).CrossRefGoogle Scholar
4. Tamari, N., Tahaka, T., Tanaka, K., Kondoh, I., Kawahara, M. and Tokita, M., J. Ceram. Soc. Japan, 103, pp 740742, (1995).CrossRefGoogle Scholar
5. Bohn, R., Oehring, M., Pfullmann, T., Appel, F, Bormann, R., Proc. and Prop. of Nanostruc. Mater., The Minerals, Metals and Materials Society., pp. 355366, (1996).Google Scholar
6. Lee, K. Y. and Ahn, J. H., Mat. Sci. Eng; A229, pp. 6367, (1997).CrossRefGoogle Scholar
7. George, E. P., Pope, D. P., Fu, C. L. and Schneibel, J. H., ISI International, Vol.31, pp. 10631075, (1991).CrossRefGoogle Scholar