Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-13T04:58:29.281Z Has data issue: false hasContentIssue false

Processing/Microstructure Relationships in Surface Melting

Published online by Cambridge University Press:  15 February 2011

R. J. Schaefer
Affiliation:
National Bureau of Standards, Washington, D.C. 20234
R. Mehrabian
Affiliation:
National Bureau of Standards, Washington, D.C. 20234
Get access

Abstract

The development of predictive models for rapid surface melting and resolidification requires coupling of realistic heat flow models to emerging theories of rapid solidification processing. Attainment of unique microstructures and phases,for example through plane-front solidification and solute trapping, can be correlated to solid/liquid interface velocity,temperature and temperature gradients, and to theories of morphological stability. However, there are important limitations on achievable solid/liquid interface velocity depending upon the heating mode and heat flux distribution,melt thickness and location of the interface within the molten zone.

An overview is given of the emerging guidelines for prediction and control of rapid solidification conditions and microstructures. Homogenization of the liquid by convection and diffusion is also discussed. Electron beam surface melting of alloy substrates is used as an example of these processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tiller, W. A., Rutler, J. W., Jackson, K. A. and Chalmers, B., Acta Met. 1 428 (1953).Google Scholar
2.Mullins, W. W. and Sekerka, R. F., J. Appl. Phys. 34 323 (1963).Google Scholar
3.Mullins, W. W. and Sekerka, R. F., J. Appl. Phys. 35 444 (1964).Google Scholar
4.Cahn, J. W., Coriell, S. R. and Boettinger, W. J., in: Laser and Electron Beam Processing of Materials,White, C. W. and Peercy, P. S., eds. (Academic Press, New York 1980) pp. 89103.Google Scholar
5.Schaefer, R. J., Coriell, S. R., Mehrabian, R., Fenimore, C. and Biancaniello, F. S., in: Rapidly Solidified Amorphous and Crystalline Alloys,Kear, B. H., Giessen, B. C. and Cohen, M., eds. (North-Holland, New York 1982) pp. 7989.Google Scholar
6.White, C. W., Wilson, S. R., Appleton, B. R. and Narayan, J., in: Laser and Electron Beam Processing of Materials, White, C. W. and Peercy, P. S. eds.(Academic Press, New York 1980) pp. 124129Google Scholar
7.Narayan, J., J. Crystal Growth, 59 583 (1982).Google Scholar
8.Coriell, S. R. and Sekerka, R. F. J. Crystal Growth (in press).Google Scholar
9.Hsu, S. C., Kou, S. and Mehrabian, R., Met. Trans. 11B, 29 (1980).Google Scholar
10.Hsu, S. C., Chakravorty, S. and Mehrabian, R., Met. Trans. 9B, 221 (1978).Google Scholar
11.Kou, S., Hsu, S. C. and Mehrabian, R., Met. Trans. 12B, 33 (1981).Google Scholar
12.Copley, S. M., Beck, D. G., Esquivel, O. and Bass, M. in: Lasers in Metallurgy,Mukherjee, K. and Mazumder, J. eds. (The Metallurgical Society of AIME, Warrandale, Pa. 1981) pp. 1119.Google Scholar
13.Falkenhagen, G. and Hofmann, W., Z. Metallkunde, 43, 69 (1952).Google Scholar
14.Draper, C. W.,Journal of Metals 34, No. 624 (1982).Google Scholar