Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T08:30:46.028Z Has data issue: false hasContentIssue false

Processing of pristine single and multiwalled carbon nanotubes as different stacking layers in bulk heterojunction solar cells

Published online by Cambridge University Press:  07 August 2013

M. Alam Khan
Affiliation:
Optoelectronic Laboratory, Department of Electrical Engineering, University of Arkansas, Fayetteville, 72701, AR, U.S.A.
Michio Matsumura
Affiliation:
Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka Campus, Osaka 560-8531, Japan
Omar Manasreh
Affiliation:
Optoelectronic Laboratory, Department of Electrical Engineering, University of Arkansas, Fayetteville, 72701, AR, U.S.A.
Get access

Abstract

A study on the individualization of commercially purchased SWCNT and MWCNT were made in an N-N dimethyl tetraformamide solvent by a combination of ultrasonication and centrifugation, and processing of these individualized CNTs are applied as a stacking layer in bulk-heterojunction (BHJ) solar cells. The wt% (mg) of pristine CNTs loading was optimized in respect to volume of solvent (ml). Then as prepared BHJ devices were modified by spin casting at 4000 rpm/30s of these pristine individualized CNTs by incorporating a stacking layer (∼30 nm) for efficiency evaluation. Comparisons of the devices made with known functionalized CNTs (acid treated) and found that stacking of pristine individualized CNTs between the PEDOT:PSS and active (P3HT:PCBM) layer demonstrate a significantly enhanced efficiency of 2.1% (JSC of 9 mA/cm2, VOC of 0.6, FF of 39) from the normal BHJ of 1.2% (JSC of 5.3 mA/cm2, VOC of 0.62, FF of 33). However, SWCNT with acid treated when applied in BHJ shows degrading efficiency (0.51%) which can be attributed to the degradation of corrugated tubular side walls leading to potential loss of opt-oelectric properties. The enhanced efficiency of devices with pristine individualize CNTs can be conjectured due to better opto-electrical properties and undamaged tubes. The microstructures of the heterojunction active layer were examined by using UV-Vis spectra, IV curve and EQE techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brabec, C. J., Sariciftci, N. S., and Hummelen, J. C., Adv. Funct. Mater. 11, 15 (2001).3.0.CO;2-A>CrossRefGoogle Scholar
Yu, G., Gao, J., Hummelen, J. C., Wudl, F., and Heeger, A. J., Science 270, 1789 (1995).CrossRefGoogle Scholar
Schulze, K., Maennig, B., Leo, K., Tomita, Y., May, C., Hupkes, J., Brier, E., Reinold, E., and Bauerle, P., Appl. Phys. Lett. 91, 073521 (2007).CrossRefGoogle Scholar
Hong, Z. R., Liang, C. J., Sun, X. Y., and Zeng, X. T., J. Appl. Phys. 100, 093711 (2006).CrossRefGoogle Scholar
Zhang, F., Jesperson, K.G., Bjorstrom, C., Svensson, M., Andesson, M. R., Sundstrom, V., Mugnusson, K., Moons, E., Yarstev, A., and Inganas, O., Adv. Funct. Mater. 16, 667 (2006).CrossRefGoogle Scholar
Peet, J., Kim, J. Y., Coates, N. E., Ma, W. L., Moses, D., Heegar, A. G., and Bazan, G. C., Nat. Mater. 6, 497 (2007).CrossRefGoogle Scholar
Kim, J. H., Huh, S. Y., Kim, T., and Lee, H., Appl. Phys. Lett. 93, 143305 (2008).CrossRefGoogle Scholar
Halls, J. J. M., Pichler, K., Friend, R. H., Moratti, S. C., and Holmes, A. B., Appl. Phys. Lett. 68, 3120 (1996).CrossRefGoogle Scholar
Huang, J., Miller, P. F., Wilson, J. S., de Mello, A. J., de Mello, J. C., and Bradley, D. D. C., Adv. Funct. Mater. 15, 290 (2005).CrossRefGoogle Scholar
Kim, J. Y., Kim, S. H., Lee, H., Lee, K., Ma, W., Gong, X., and Heeger, A. J., Adv. Mater. 18, 572 (2006).CrossRefGoogle Scholar
Pradhan, B., Batabyal, S. K., and Pal, A. J., Appl. Phys. Lett. 88, 093106 (2006).CrossRefGoogle Scholar
Durkop, T. G. S., Cobas, E., and Fuhrer, M. S., Nano Lett. 4, 35 (2004).CrossRefGoogle Scholar
deHeer, W. A., Bonard, J. M., Fauth, K., Chatelain, A., Forro, L., and Ugarte, D., Adv. Mater. 9, 87 (1997).CrossRefGoogle Scholar
Berber, S., Kwon, Y. K., and Tomanek, D., Phys. Rev. Lett. 84, 4613 (2000).CrossRefGoogle Scholar
Landi, B. J., Ruf, H. J., Worman, J. J., and Raffaelle, R. P., J. Phys. Chem. B, 108, 17089 (2004).CrossRefGoogle Scholar