Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-13T14:12:52.444Z Has data issue: false hasContentIssue false

Preparation of PIT-Free Hydrogen-Terminated Si(111) in Deoxygenated Ammonium Fluoride

Published online by Cambridge University Press:  10 February 2011

Christopher P. Wade
Affiliation:
Department of Chemistry, Stanford University, Stanford, CA 94305-5080
Christopher E. D. Chidsey
Affiliation:
Department of Chemistry, Stanford University, Stanford, CA 94305-5080
Get access

Abstract

We show by ex-situ STM that pit-free H-Si(111) surfaces can be prepared by immersion of pre-oxidized Si(111) in deoxygenated 40% NH4F for 15 minutes. In contrast, H-Si(111) prepared in air-saturated 40% NH4F for 15 minutes results in small etch pits randomly covering ca. 1% of the surface. Added dioxygen, shorter etching times or stirring of the air-saturated etch solution increase the etch pit density. Dissolved oxygen is responsible for the initiation of etch pits on the (111) monohydride terraces. The reaction between dissolved oxygen and the H-Si bond of the (111) terrace is limited by mass transport of dissolved oxygen to the silicon surface. A proposed reaction mechanism of dissolved oxygen with H-Si is briefly mentioned, which explains not only etch pit initiation in ammonium fluoride but also the oxidation of hydrogenterminated silicon in wet, oxygenated environments. The results presented here for H-Si(111) lead to a greater understanding of the wet oxidation and etching processes of this important model surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES AND NOTES

1. Higashi, G.S., Chabal, Y.J., Trucks, G.W., and Raghavachari, K., Appl.Phys.Lett. 12(7), 656658 (1990).CrossRefGoogle Scholar
2. Wade, C.P., Luo, H., Dunbar, W.L., Linford, M.R., and Chidsey, C.E.D., MRS Symp. Proc. 451 (1997).Google Scholar
3. Allongue, P., Kieling, V., and Gerischer, H., Electrochim. Acta 40 (10), 13531360 (1995).CrossRefGoogle Scholar
4. Higashi, G.S., Chabal, Y.J., Raghavachari, K., Becker, R.S., Green, M.P., Hanson, K., Boone, T., Eisenberg, J.H., Shive, S.F., DiBello, G.N., and Fulford, K.L., Proc. Electrochem. Soc. 93–13 (ULSI Science and Technology/1993), 19891998 (1993).Google Scholar
5. Zwan, M.L.W. van der, Bardwell, J.A., Sproule, G.I., and Graham, M.J., Appl. Phys. Lett. 64 (4), 446–7 (1994).CrossRefGoogle Scholar
6. Campbell, S.A., Cooper, K., Dixon, L., Earwaker, R., Port, S.N., and Schiffrin, D.J., J. Micromech. Microeng. 5, 209218 (1995).CrossRefGoogle Scholar
7. Watanabe, S. and Sugita, Y., Surf. Sci. 327 (1/2), 18 (1995).CrossRefGoogle Scholar
8. Yau, S.-L., Fan, F.-R.F., and Bard, A.J., J. Electrochem. Soc. 139 (10), 28252829 (1992).CrossRefGoogle Scholar
9. Hessel, H.E., Feltz, A., Reiter, M., Memmert, U., and Behm, R.J., Chem.Phys.Lett. 186 (2–3), 275280 (1991).CrossRefGoogle Scholar
10. Wade, C.P. and Chidsey, C.E.D., manuscript in preparation.Google Scholar
11. Pietsch, G.J., Appl. Phys. A 60 (4), 347363 (1995).CrossRefGoogle Scholar
12. Bard, A.J., Parsons, R., and Jordan, J., Standard Potentials in Aqueous Solutions (Marcel Dekker, Inc., New York, 1985).Google Scholar
13. Morita, M., Ohmi, E.,Hasegawa, E., Kawakami, M., and Suma, K., Appl.Phys.Lett. 55 (6),562564(1989).CrossRefGoogle Scholar
14. Roche, J.R., Ramonda, M., Thibaudau, F., Dumas, P., Mathiez, P., Salvan, F., and Allongue, P., Micros., Microanal., Microstr. 5, 291299 (1994).CrossRefGoogle Scholar
15. Allongue, P. and Blonkowski, S., Electrochim. Acta 38 (7), 889895 (1993).CrossRefGoogle Scholar