Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-29T19:46:05.341Z Has data issue: false hasContentIssue false

Preparation of Nanocomposites Containing Poly(Ethylene Oxide) and MoS2, TiS2, or MoO3

Published online by Cambridge University Press:  15 February 2011

Jinghe Wu
Affiliation:
Department of Chemistry and Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331-4003
Michael M. Lerner
Affiliation:
Department of Chemistry and Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331-4003
Get access

Abstract

Single-phase nanocomposites containing montmorillonite, MoS2, MoO3 or TiS2 with poly(ethylene oxide) are obtained by the exfoliation of the layered solid, adsorption of polymer, and subsequent precipitation of solid product. Aqueous solutions can be employed for all syntheses except PEO/TiS2, which is prepared from lithiated TiS2 in an N-methyl formamide (NMF) solution. X-ray diffraction indicates that the resulting solids increase in basal-plane repeat by approximately 4 or 8 Å, consistent with the incorporation of a single or double layer of polymer between the inorganic layers. Reaction stoichiometries and elemental analyses provide compositions for the single-phase products.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The Formation and Properties of Clay-Polymer Complexes; Theng, B. K. G., Ed.; Elsevier: New York, NY, 1979.Google Scholar
2. Aranda, P.; Ruiz-Hitsky, E. Chem. Mater. 1992, 4, 1395.Google Scholar
3. Wu, J.; Lerner, M. M. Chem. Mater. 1993, 5, 835.Google Scholar
4. Liu, Y.-J.; DeGroot, D.C.; Schindler, J.L.; Kannewurf, C.R.; Kanatzidis, M.G. Chem. Mater. 1991, 3, 992.Google Scholar
5. Vaia, R. A.; Ishii, H.; Giannelis, E. P. Chem. Mater. 1993, 5, 1694.Google Scholar
6. Lemmon, J.; Lerner, M. Chem. Mater. 1994, 6, 207.Google Scholar
7. Ruiz-Hitzky, E.; Jimenez, R.; Casal, B.; Manriquez, V.; Santa Ana, A.; Gonzalez, G. Adv. Mater. 1993, 5, 738.Google Scholar
8. Bissessur, R.; Kanatzidis, M. G.; Schindler, J. L.; Kannewurf, C. R. J. Chem. Soc., Chem. Commun. 1993, 1582.Google Scholar
9. Lagadic, I.; Léaustic, A.; Clément, R. J. Chem. Soc., Chem. Commun. 1992, 1396.Google Scholar
10. Stucky, G. D. In Progress in Inorganic Chemistry; Lippert, S. J., Ed. ; Wiley & Sons Inc.: New York, NY, 1992; Vol. 40.Google Scholar
11. Divigalpitiya, W. M.; Frindt, R. F.; Morrison, S. R. J. Mater. Res. 1991, 6, 1103.Google Scholar
12. Liu, Y.-J.; DeGroot, D.C.; Schindler, J.L.; Kannewurf, C.R.; Kanatzidis, M.G. J. Chem. Soc., Chem. Commun. 1993, 593.Google Scholar
13. Bissessur, R.; DeGroot, D.; Schindler, J.; Kannewurf, C.; Kanatzidis, M. J. Chem. Soc., Chem. Commun. 1993, 687.Google Scholar
14. Nazar, L. F.; Zhang, Z.; Zinkweg, D. J. Am. Chem. Soc., 1992, 114, 6239.Google Scholar
15. Murphy, D. W.; DiSalvo, F. J.; Hull, G. W.; Waszczak, J. V. lnorg. Chem. 1976, 15, 17.Google Scholar
16. Divigalpitiya, W. M. R.; Frindt, R. F.; Morrison, S. R. Science 1989, 246, 369.Google Scholar