Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-17T09:59:02.335Z Has data issue: false hasContentIssue false

Preparation of Metal Oxide Nanowires by Hydrothermal Synthesis in Supercritical Water

Published online by Cambridge University Press:  01 February 2011

Yukiya Hakuta
Affiliation:
Supercritical Fluid Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Nigatake 4–2–1, Miyagino-ku, Sendai 983–8551, JAPAN
Hiromichi Hayashi
Affiliation:
Supercritical Fluid Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Nigatake 4–2–1, Miyagino-ku, Sendai 983–8551, JAPAN
Kunio Arai
Affiliation:
Supercritical Fluid Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Nigatake 4–2–1, Miyagino-ku, Sendai 983–8551, JAPAN
Get access

Abstract

Three kinds of single metal oxide (MnO2, ZnO, and AlO(OH)) and one complex metal oxide (K2O·6TiO2) having nano structure of wire, rod and ribbon were rapidly synthesized by hydrothermal synthesis in supercritical water. Aqueous Mn(NO3)2, Zn(NO)2, Al(NO3)3 solutions and mixtures of TiO2 sols and KOH solutions were used as starting materials, respectively. Syntheses of these nanostructured materials were performed by a flow type apparatus. We investigated the relationship between reaction parameters (temperature, pH and reaction time) and morphologies of the products. Reaction temperatures were 350, 400, and 420 °C. Reaction time is in the range of 1.8 – 116 s. The product was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that particle morphologies strongly depend on pH for MnO2 and ZnO. MnO2 nanowires with 10 nm in diameter and ZnO nanorods with 50 nm in diameter were obtained from acidic metal salt solutions. In the case of AlO(OH), temperature and time were key parameters for crystal growth. In the case of K2O6TiO2, larger fibrous particles with 50 nm in diameter were obtained at higher reaction temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

[1] Hu, J., Odom, T. W., Lieber, C. M., Acc. Chem. Res. 32, 435 (1999).Google Scholar
[2] Lin, Y., Xie, T., Cheng, B., Geng, B., Zhang, L., Chem. Phys. Lett. 380, 521 (2003).Google Scholar
[3] Pan, Z., Dai, S., Beach, D. B., Lowndes, D.H., Nano Letters 3, 1279(2003).Google Scholar
[4] Limmer, S.J., Hubler, T.L., Cao G, G., J. Sol-Gel Sci. Tech. 26, 577(2003).Google Scholar
[5] Xu, H., Qin, D. H., Yang, Z., Li, H. L., Mater. Chem. Phys. 80, 524 (2003).Google Scholar
[6] Zheng, M.J., Zhang, L.D., Li, G.H., Zhang, X. Y., Wang, X.F., Appl. Phys. Lett. 79, 839(2001).Google Scholar
[7] Zheng, M., Zhang, L., Zhang, X., Zhang, J., Li, G., Chem. Phys. Lett. 334, 298(2001).Google Scholar
[8] Yang, H., Shi, Q., Tian, B., Lu, Q., Gao, F., Xie, S., Fan, J., Yu, C.,; Tu, B., Zhao, D., J. Am. Chem. Soc. 125, 4724(2003).Google Scholar
[9] Zhou, Y., Shen, C., Li, H., Solid State Ionics. 146, 81(2002).Google Scholar
[10] Zhou, Y., Huang, J., Shen, C., Li, H., Mater. Sci. Eng. A 335, 260(2002).Google Scholar
[11] Pradhan, S. K., Reucroft, P. J., Yang, F., Dozier, A., J. Cryst. Growth 256, 83(2003).Google Scholar
[12] Li, S. Y., Lee, C. Y., Tseng, T. Y., J. Cryst. Growth 247, 357(2003).Google Scholar
[13] Kim, K. S., Kim, H. W., Physica B 328, 368(2003).Google Scholar
[14] Ogata K, K., Maejima, K., Fujita, S., J. Cryst. Growth 248, 25(2003).Google Scholar
[15] Sun, X. M., Chen, X., Deng, Z. X., Li, Y. D., Mater. Chem. Phys. 78, 99(2003).Google Scholar
[16] Chen, S. J., Zhou, J. H., Chen, X. T., Li, J., Li, L. H., Hong, J. M., Xue, Z., You, X. Z., Chem. Phys. Lett. 375, 185(2003).Google Scholar
[17] Hakuta, Y., Haganuma, T., Sue, K., Adschiri, T., Arai K, K., Mater. Res. Bull. 38, 1257(2003).Google Scholar
[18] Adschiri, T., Hakuta, Y., Arai, K., Ind. Chem. Eng. Res. 39, 4901(2000).Google Scholar
[19] Adschiri, T., Kanazawa, K., Arai, K., J. Am. Ceram. Soc. 75, 1019(1992).Google Scholar
[20] Hakuta, Y., Adschiri, T., Hirakoso, H., Arai, K., Fluid Phase Equilibiria 158, 733(1999).Google Scholar