Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-20T23:28:22.564Z Has data issue: false hasContentIssue false

Preparation of luminescent inorganic core/shell-structured nanoparticles

Published online by Cambridge University Press:  23 May 2011

Moritz Milde
Affiliation:
Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082 Wuerzburg, Germany
Sofia Dembski
Affiliation:
Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082 Wuerzburg, Germany
Sabine Rupp
Affiliation:
Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082 Wuerzburg, Germany
Carsten Gellermann
Affiliation:
Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082 Wuerzburg, Germany
Gerhard Sextl
Affiliation:
Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97082 Wuerzburg, Germany Department of Chemical Technology of Materials Synthesis, University of Wuerzburg, Roentgenring 11, 97070 Wuerzburg
Miroslaw Batentschuk
Affiliation:
Chair WW6 Materials for Electronics and Energy Technology (i-MEET), University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen, Germany
Andres Osvet
Affiliation:
Chair WW6 Materials for Electronics and Energy Technology (i-MEET), University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen, Germany
Albrecht Winnacker
Affiliation:
Chair WW6 Materials for Electronics and Energy Technology (i-MEET), University of Erlangen-Nuremberg, Martensstr. 7, 91058 Erlangen, Germany
Get access

Abstract

SiO2 nanoparticles (NPs) were coated with Eu3+-doped calcium phosphate (CP) and Mn2+-doped ZnO to give Zn2SiO4 via a modified Pechini sol-gel process. Annealing at high temperatures resulted in NPs with an amorphous core and a crystalline luminescent shell. It was shown that this procedure can be applied to silica cores with diameters below 300 nm. By transmission electron microscopy, elemental analysis and from X-ray diffraction patterns it was determined that shell composition and structure are influenced by the annealing temperature and pH of the coating solution. Measurements of photoluminescence intensities displayed their dependency on the concentration of dopant in the resulting core/shell NPs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Höppe, H. A., Angew. Chem. Int. Ed. 48, 3572 (2009).Google Scholar
2. Shen, J., Sun, L.-D. and Yan, C.-H., Dalton Trans. 42, 5687 (2008).Google Scholar
3. Mondéjar, S. P., Kovtun, A. and Epple, M., J. Mater. Chem. 17, 4153 (2007).Google Scholar
4. Chander, H., Mater. Sci. Eng. R 49, 113 (2005).Google Scholar
5. Dittmeyer, R., Keim, R.W., Reysa, G. and Oberholz, A., Chemische Technik: Prozesse und Produkte. Band 2: Neue Technologien. (Wiley-VCH, Weinheim 2004).Google Scholar
6. Wu, Y., Wang, Y., He, D., Fu, M., Che, Z. and Li, Y., J. Lumin. 130, 1768, (2010).Google Scholar
7. Lin, J., Yu, M., Lin, C. and Liu, X., J. Phys. Chem. C, 111, 5835 (2007).Google Scholar
8. Stöber, W., Fink, A. and Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).Google Scholar
9. Dembski, S., Rupp, S., Gellermann, C., Batentschuk, M., Osvet, A. and Winnacker, A., J. Colloid Interface Sci. (2010) in press.Google Scholar
10. Dembski, S., Milde, M., Dyrba, M., Schweizer, S. and Gellermann, C., (2011) in progress.Google Scholar
11. Kakihana, M. and Yoshimura, M., Bull. Chem. Soc. Jpn. 72, 1427 (1999).Google Scholar
12. Pena, J. and Vallet-Regi, M., J. Eur. Ceram. Soc. 23, 1687 (2003).Google Scholar
13. Stevels, A. L. N. and Vink, A. T., J. Lumin. 8 443 (1974).Google Scholar
14. Morell, A. and El Khiati, N., J. Electrochem. Soc. 140, 2019 (1993).Google Scholar