Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-20T07:10:43.549Z Has data issue: false hasContentIssue false

Preparation And Properties Of Solar Selective Absorbers Based On AlCuFe AND AlCuFeCr Thin Films: Industrial Aspects

Published online by Cambridge University Press:  10 February 2011

T. Eisenhammer
Affiliation:
TiNOX Gesellschaft ffir Energieforschung und Entwicklung mbH, Schwere Reiter Str. 35/2B, 80797 M¨nchen, Germany
H. Nolte
Affiliation:
Sektion Physik, Universitit Miinchen, D-85748 Garching, Germany
W. Assmann
Affiliation:
Sektion Physik, Universitit Miinchen, D-85748 Garching, Germany
J. M. Dubois
Affiliation:
LSG2M and GDR CINQ, Ecole des Mines de Nancy, Parc de Saurupt, 54042 Nancy CEDEX, France
Get access

Abstract

Solar selective absorbers for thermal energy applications can be realized with films of quasicrystal forming alloys. Absorbers were produced by sputtering thin films of AlCuFe and AlCuFeCr. Alumina and floatglass were used as dielectric antireflective coatings, which are necessary for the required optical properties. For applications, several aspects are of importance: high solar absorptance and low thermal emittance have to be achieved. Moreover, the coatings have to show good adhesion and stability with respect to oxidation in air at elevated temperatures and exposure to humidity and condensation of water. The present study emphasizes these aspects, especially degradation stability, for coatings deposited on technical copper foils with large roughness. Oxidation stability is achieved easily, while humidity stability depends strongly on the choice of materials. The combination AlCuFeCr/floatglass turned out to be stable, while the combination AlCuFe/alumina is destroyed rapidly.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W., Phys. Rev. Lett. 53, 1951 (1984).Google Scholar
[2] For a recent review see Quasicrystals in MRS Bulletin 22 (11), pp. 34–72 (1997).Google Scholar
[3] Stebut, J. von, Soro, J. M., Plaindoux, Ph., and Dubois, J. M. in New Horizons in Quasicrystals, edited by Goldman, A. I., Sordelet, D. J., Thiel, P. A., and Dubois, J. M., (World Scientific, Singapore, 1997), pp. 248255.Google Scholar
[4] Archambault, P., Plaindoux, P., Belin-Ferré, E., and Dubois, J. M., these proceedings.Google Scholar
[5] Dubois, J. M. and Weinland, P., Patent US 5,204,191, 1993.Google Scholar
[6] Kelton, K. F., Viano, A. M., Stroud, R. M., Majzoub, E. H., Gibbons, P. C., Misture, S. T., Goldman, A. I., and Kramer, M. J. in New Horizons in Quasicrystals, edited by Goldman, A. I., Sordelet, D. J., Thiel, P. A., and Dubois, J. M., (World Scientific, Singapore, 1997), pp. 272–279.Google Scholar
[7] Liu, P. and Nilsson, J.-O., pp. 264–271.Google Scholar
[8] Inoue, A., Kimura, H., and Kita, K., pp. 256–263.Google Scholar
[9] Homes, C. C., Timusk, T., Wu, X., Altounian, Z., Sahnoune, A., and Strdm-Olsen, J. O., Phys. Rev. Lett. 67, 2694 (1991); L. Degiorgi, M. A. Chernikov, C. Beeli, and H. R. Ott, Solid State Communications 87, 721 (1993); D. Macko and M. Kalpirkovi, Phil. Mag. Lett. 67, 307 (1993); D. N. Basov, F. S. Pierce, P. Volkov, S. J. Poon, and T. Timusk Phys. Rev. Lett. 73, 1865 (1994).Google Scholar
[10] Eisenhammer, T., Thin Solid Films 270, 1 (1995).Google Scholar
[11] Eisenhammer, T., Mahr, A., Haugeneder, A., Reichelt, T., and Assmann, W. in 5 th International Conference on Quasicrystals edited by Janot, C. and Mosseri, R., (World Scientific, Singapore, 1995), pp. 758765.Google Scholar
[12] Eisenhammer, T. and Trampert, A., Phys. Rev. Lett. 78, 262 (1997).Google Scholar
[13] Eisenhammer, T., Mahr, A., Haugeneder, A., and Assmann, W., Solar Energy Materials and Solar Cells 46, 53 (1997).Google Scholar
[14] Haugeneder, A., Eisenhammer, T., Mahr, A., Schneider, J., and Wendel, M., Thin Solid Films 307, 120 (1997).Google Scholar
[15] Eisenhammer, T., Haugeneder, A., and Mahr, A., Solar Energy Materials and Solar Cells 54, 379 (1998).Google Scholar
[16] Carlsson, B., Frei, U., Köhl, M., and Möller, K., Accelerated life testing of solar energy, materials, Report of “IEA Solar Heating and Cooling Programme TASK X”, Solar Materials Research and Development, 1994.Google Scholar
[17] Dong, C. and Dubois, J. M., J. Mater. Sci. 26, 1647 (1991).Google Scholar
[18] Eisenhammer, T., Muggenthaler, F., and Sizmann, R. in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XII, edited by Lampert, C. M., (Proc. SPIE 2017, 1993), pp. 4657.Google Scholar
[19] Assmann, W., Reichelt, Th., Eisenhammer, T., Huber, H., Mahr, A., Schellinger, H., and Wohlgemuth, R., NIMB 113, 303 (1996).Google Scholar
[20] Dubois, J. M. and Pianelli, A., Patent WO 92/13111, 1992.Google Scholar