Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T04:02:37.074Z Has data issue: false hasContentIssue false

Preparation and Characterization of Cu-Ga-Se Films of Ordered Vacancy Compound

Published online by Cambridge University Press:  01 February 2011

S. Nishiwaki
Affiliation:
Lux-Steiner Hahn-Meitner-Institute Berlin, Glienicker Str. 100, D-14109 Berlin, Germany
S. Siebentritt
Affiliation:
Lux-Steiner Hahn-Meitner-Institute Berlin, Glienicker Str. 100, D-14109 Berlin, Germany
M. Ch. Lux-Steiner
Affiliation:
Lux-Steiner Hahn-Meitner-Institute Berlin, Glienicker Str. 100, D-14109 Berlin, Germany
Get access

Abstract

Cu-Ga-Se films with an orderd vacancy compound (OVC) structure were prepared at substrate temperature about 500 °C by thermal co-deposition. With a preparation under extremely Se excess condition, films of the OVC were synthesized within the compositional ratio of 0.73 ≤ [Ga]/([Cu]+[Ga]) ≤ 0.86 along Cu2Se-Ga2Se3 pseudo binary system. The growth on soda-lime glass substrates improves the crystallinity compared to that on alkali-free glass. An increase in the optical bandgaps of OVC films from 1.85 eV to 1.94 eV was observed with an increase in the Ga content of the films. The deposition of Cu and Se onto Ga2Se3 films resulted in a vertically inhomogeneous film: the bottom layer with the OVC structure and the top layer with the chalcopyrite structure. A solar cell using the CuGa5.0Se8.1 film within a ZnO/CdS/CuGa-Se/Mo/soda-lime glass substrate structure showed an open circuit voltage of 947 mV, an efficiency of 2.2 %, a short circuit current density of 4.5 mA/cm2, and a fill factor of 0.52 (Air Mass 1.5, 0.5 cm2, total area).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Contreras, M. A., Egaas, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F. and Noufi, R., Prog. Photovolt. Res. Appl. 7, 311 (1999).Google Scholar
2. Schmid, D., Ruckh, M., Grunwald, F. and Schock, H. W., Thin Solid Films, 73, 2902 (1993).Google Scholar
3. Turcu, M., Pakma, O. and Rau, U., Appl. Phys. Lett., 80, 2598 (2002).Google Scholar
4. Hanada, T., Yamana, A., Nakamura, Y., Nittono, O. and Wada, T., Jpn. J. Appl. Phys, 36, L1494 (1997).Google Scholar
5. Xiao, H. Z., Yang, L.-Chung and Rockett, A., J. Appl. Phys., 76, 1503 (1994).Google Scholar
6. Negami, T., Kohara, N., Nishitani, M., Wada, T. and Hirao, T., Appl. Phys. Lett., 67, 825 (1995).Google Scholar
7. Kohara, N., Negami, T., Nishiwani, M., Hashimono, Y. and Wada, T., Appl. Phys. Lett., 71, 835 (1997).Google Scholar
8. Suzuki, M., Uenoyama, T., Wada, T., Hanada, T. and Nakamura, Y., Jpn. J. Appl. Phys., 36, L1139 (1997).Google Scholar
9. Marín, G., Tauleigne, S., Wasim, S. M., Guevara, R., Delgado, J. M., Rincón, C., Mora, A. E. and Pérez, G. Sánchez, Mater. Res. Bull., 33, 1057 (1998).Google Scholar
10. Zhnag, S. B., Wei, Su-Huai and Zunger, A., Phys.Rev.B, 57, 9642 (1998).Google Scholar
11. Márquez, R. and Rincón, C., Mater. Lett., 40, 66 (1999).Google Scholar
12. Kimura, R., Mouri, T., Nakada, T., Niki, S., Yamada, A., Fons, P., Matsuzawa, T., Takahashi, K. and Kunioka, A., Jpn. J. Appl. Phys., 38, L899 (1999)Google Scholar
13. Wasim, S. M., Rincón, C., Marínand, G. Delgado, J.M., Appl. Phys. Lett., 77, 94 (2000).Google Scholar
14. Nakada, T., Mouri, T., Okano, Y. and Kunioka, A., Proc. 14th European Photovoltaic Solar Energy Conf., Barcelona 1997, (Stephens & Assoc., Bedford, U. K., 1997), pp.2143.Google Scholar
15. Okamoto, T., Kojima, N., Yamada, A., Konagai, M., Takahashi, K., Nakamura, Y. and Nittono, O., Jpn. J. Appl. Phys., 31, L141 (1992).Google Scholar
16. Nadenau, V., Lippold, G., Rau, U. and Schock, H.W., J. Cryst. Growth, 233, 13 (2001).Google Scholar
17. Balboul, M.R., Rau, U., Bilger, G., Schmidt, M., Schock, H.W. and Werner, J.H., J. Vac. Sci. Technol. A, 20, 1247 (2002).Google Scholar
18. Mikkelsen, J.C. Jr, J. Electronic Mater., 10, 541 (1981).Google Scholar
19. Herberholz, R., Rau, U., Schock, H.W., Haalboom, T., Godecke, T., Ernst, F., Beiharz, C., Benz, K.W. and Cahen, D., Eur. Phys. J. Appl. Phys., 6, 131 (1999).Google Scholar
20. Kohara, N., Nishiawaki, S., Negami, T. and Wada, T., Jpn. J. Appl. Phys., 39, 6316 (2000).Google Scholar