Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T18:26:28.798Z Has data issue: false hasContentIssue false

Porous Amorphous Si Formation by the Etching of Single Crystal Si Substrates

Published online by Cambridge University Press:  25 February 2011

T. George
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
R. P. Vasquez
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
S. S. Kim
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
R.W. Fathauer
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
W. T. Pike
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
Get access

Abstract

The nature of light-emitting porous Si layers produced by non-anodic stain etching of p-type (100) Si substrates is studied. The layers were characterized by transmission electron microscopy as being amorphous in nature. X-ray photoelectron spectroscopy and electron spin resonance measurements show these layers to be composed mainly of a-Si. The formation mechanism of the a-Si is explored using by stain etching SiGe ‘marker’ layers within epitaxially grown Si films and by high temperature annealing. These experiments provide strong evidence for a spontaneous crystalline-amorphous phase transformation during the etching process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
2. Fathauer, R. W., George, T., Ksendzov, A., Lin, T.-L., Pike, W. T. and Vasquez, R. P., Appl. Phys. Lett. 60, 995 (1992).CrossRefGoogle Scholar
3. Archer, R.J., J. Phys. Chem. Solids 14, 104 (1960).Google Scholar
4. Cullis, A. G. and Canham, L. T., Nature 353, 335 (1991).CrossRefGoogle Scholar
5. Vasquez, R. P., Fathauer, R. W., George, T., Ksendzov, A. and Lin, T. L., Appl. Phys. Lett. 60, 1004 (1992).Google Scholar
6. Pickering, C., Beale, M. I. J., Robbins, D. J., Pearson, P. J. and Greef, R., Thin Solid Films 125, 157 (1985).Google Scholar
7. Pickering, C., Beale, M. I. J., Robbins, D. J., Pearson, P. J. and Greef, R., J. Phys. C. 17, 6535 (1984).CrossRefGoogle Scholar
8. George, T., Anderson, M. S., Pike, W. T., Lin, T. L., Fathauer, R. W., Jung, K. H. and Kwong, D. L., Appl. Phys. Lett. 60, 2359 (1992).Google Scholar
9. Vasquez, R. P., Madhukar, A. and Tanquay, A. R. Jr, J. Appl. Phys. 58, 2337 (1985) and references therein.Google Scholar
10. Thomas, P. A., Brodsky, M. H., Kaplan, D. and Lepine, D., Phys. Rev. B 18, 3059 (1978).Google Scholar
11. Dersch, H., Stuke, J. and Beichler, J., Phys. Stat. Sol. (b) 105, 265 (1981).Google Scholar
12. Hong, C. S. and Hwang, H. L., Appl. Phys. Lett. 49, 645 (1986).CrossRefGoogle Scholar
13. Veprek, S., Iqbal, Z. and Sarott, F.-A., Phil. Mag. B 45, 137 (1982).Google Scholar
14. Gaffet, E. and Harmelin, M., J. Lessc. Met. 157, 201 (1990).Google Scholar
15. Gaffet, E., Faudot, F. and Harmelin, M., Mat. Sci. and Engg. A. 149, 85 (1991).Google Scholar
16. Drosd, R. M., Ph. D. Thesis, U. C. Berkeley, Nov. 1979 and references therein.Google Scholar