Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T17:55:04.144Z Has data issue: false hasContentIssue false

Populations of Fluorine and Arsenic in AsF5-Graphite Intercalation Compounds

Published online by Cambridge University Press:  15 February 2011

H. Sfihi
Affiliation:
Laboratoire de Physique Quantique, ERA N°676E.S.P.C.I., 10, rue Vauquelin 75231 Paris Cedex 05, FRANCE
L. Facchini
Affiliation:
Laboratoire de Physique Quantique, ERA N°676E.S.P.C.I., 10, rue Vauquelin 75231 Paris Cedex 05, FRANCE
J. Bouat
Affiliation:
Laboratoire de Physique Quantique, ERA N°676E.S.P.C.I., 10, rue Vauquelin 75231 Paris Cedex 05, FRANCE
D. Bonnin
Affiliation:
Laboratoire de Physique Quantique, ERA N°676E.S.P.C.I., 10, rue Vauquelin 75231 Paris Cedex 05, FRANCE
A.P. Legrand
Affiliation:
Laboratoire de Physique Quantique, ERA N°676E.S.P.C.I., 10, rue Vauquelin 75231 Paris Cedex 05, FRANCE
G. Furdin
Affiliation:
Laboratoire de Chimle du Solide Minéiral, Service de Chimie Minerale Appliquee du Professeur Hérold, LA N°158, C.O. 140, 54037 Nancy Cedex, FRANCE
D. Billaud
Affiliation:
Laboratoire de Chimle du Solide Minéiral, Service de Chimie Minerale Appliquee du Professeur Hérold, LA N°158, C.O. 140, 54037 Nancy Cedex, FRANCE
Get access

Abstract

19F nuclear magnetic resonance and As X-ray absorption results on AsF5-graphite intercalation compounds are discussed in terms of species of the commonly used oxidation reaction of the graphitic planes. Three fluorine populations and two oxidation states of the arsenic are clearly present, but they cannot be easily related to the oxidation reaction of the graphite planes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bartlett, N., McQuillan, B. and Robertson, A.S., Mater. Res. Bull. 13, 1259 (1978).Google Scholar
2. Moran, M.J., Fischer, J.E. and Salaneck, W.R., J. Chem. Phys. 73, 629 (1980).Google Scholar
3. Schlögl, R., Streifinger, L., Pentenriedier, R. and Boehm, H.P., p. 276;Google Scholar
3a and Schlögl, R. and Boehm, H.P., p. 308, in the Extended Abstracts, 14th Biennal Conf. on Carbon, Pennsylvania State University (1979).Google Scholar
4. Joyner, R.W. and Vogel, F.L., Synth. Met. 4, 85 (1981).Google Scholar
5. Ballard, J.G. and Birchall, T., J. Chem. Soc., Dalton Trans., 1859 (1976).Google Scholar
6. Wortmann, G., private communication.Google Scholar
7. Sisson, K., Boolchand, P., Bresser, W.J., McDaniel, D., Yeh, V. and Eklund, P.C., Bull. Amer. Phys. Soc. 27, 340 (1982).Google Scholar
8. Resing, H.A., Vogel, F.L. and Wu, T.C., Mat. Sci. Eng. 41, 113 (1979).Google Scholar
9. Kleinberg, R.L. and Ebert, L.B., Synth. Met. 2, 245 (1980).CrossRefGoogle Scholar
10. Facchini, L., Bouat, J., Sfihi, H., Legrand, A.P., Furdin, G., Melin, J. and Vangelisti, R., Synth. Met. 5, 11 (1982).Google Scholar
11. Robertson, A.S., Ph.D., Berkeley (1979).Google Scholar
12. Heald, S.M., Goldberg, H.A. and Kalnin, I., International Conference on EXAFS and Near Edge Structure Frascati September 1982.Google Scholar