Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-18T23:26:43.515Z Has data issue: false hasContentIssue false

Polymorphous silicon nanowires synthesized by plasma-enhanced chemical vapor deposition

Published online by Cambridge University Press:  11 February 2011

X.B. Zeng
Affiliation:
State key Laboratory for surface physics, Institute of Semiconductors Chinese Academy of Science, Beijing, 100083, China
X.B. Liao
Affiliation:
State key Laboratory for surface physics, Institute of Semiconductors Chinese Academy of Science, Beijing, 100083, China
H.W. Diao
Affiliation:
State key Laboratory for surface physics, Institute of Semiconductors Chinese Academy of Science, Beijing, 100083, China
Z.H. Hu
Affiliation:
State key Laboratory for surface physics, Institute of Semiconductors Chinese Academy of Science, Beijing, 100083, China
Y.Y. Xu
Affiliation:
State key Laboratory for surface physics, Institute of Semiconductors Chinese Academy of Science, Beijing, 100083, China
S.B. Zhang
Affiliation:
State key Laboratory for surface physics, Institute of Semiconductors Chinese Academy of Science, Beijing, 100083, China
C.Y. Chen
Affiliation:
State key Laboratory for surface physics, Institute of Semiconductors Chinese Academy of Science, Beijing, 100083, China
W.D. Chen
Affiliation:
State key Laboratory for surface physics, Institute of Semiconductors Chinese Academy of Science, Beijing, 100083, China
G.L. Kong
Affiliation:
State key Laboratory for surface physics, Institute of Semiconductors Chinese Academy of Science, Beijing, 100083, China
Get access

Abstract

Polymorphous Si nanowires (SiNWS) have been successfully synthesized on Si wafer by plasma enhanced chemical vapor deposition (PECVD) at 440°C, using silane as the Si source and Au as the catalyst. To grow the polymorphous SiNWS preannealing the Si substrate with Au film at 1100 °C is needed. The diameters of Si nanowires range from 15 to 100 nm. The structure, morphology and chemical composition of the SiNWS have been characterized by high resolution x-ray diffraction, scanning electron microscopy, transmission electron microscopy, as well as energy dispersive x-ray spectroscopy. A few interesting nanowires with Au nanoclusters uniformly distributed in the body of the wire were also produced by this technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Morales, A. M. and Lieber, C. M., Science 279, 208(1998)Google Scholar
[2] Holmes, J. D., Johnston, K. P., Doty, R. C., and Korgel, B. A., Science 287, 1471(2000)Google Scholar
[3] Yu, D.P., Xing, Y.J., Hang, Q.L., Yan, H.F., Xu, J., Xi, Z.H., Feng, S.Q., Physica E9, 305(2001)Google Scholar
[4] Lew, K.K., Reuther, C., Carim, A.H., Redwing, J.M., Martin, B.R., J. Vac. Sci. Technol. B 20, 389 (2002)Google Scholar
[5] Westwater, J., Gosain, D. P., Tomiya, S., and Usui, S., J. Vac. Sci. Technol. B15, 554 (1997)Google Scholar
[6] Wagner, R. S. and Ellis, W. C., Appl. Phys. Lett. 4, 89(1964)Google Scholar
[7] Lieber, C.M., Solid State Commun. 107, 607(1998)Google Scholar
[8] Ozaki, N., Ohno, Y., Takeda, S., Appl. Phys. Lett 73, 3700(1998)Google Scholar
[9] Cui, Y., Lauhon, L.J., Gudiksen, M.S., Wang, J.F., Lieber, C.M., Appl. Phys. Lett 78, 2214(2001)Google Scholar
[10] Gudiksen, M.S., Wang, J.F., Lieber, C.M., J. Phys. Chem. B105, 4062(2001)Google Scholar
[11] Sunkara, M.K., Sharma, S., Miranda, R., Appl. Phys. Lett 79, 1548(2001)Google Scholar
[12] Liu, Z.Q., Xie, S.S., Zhou, W.Y., Sun, L.F., Li, Y.B., Tang, D.S., Zou, X.P., Wang, C.Y., Wang, G., J. crystal. Growth 224, 230(2001)Google Scholar
[13] Zhang, Z., Fan, X.H., Xu, L., Lee, C.S., Lee, S.T., Chemi. Phys. Lett. 337, 18(2001)Google Scholar
[14] Xing, Y.J., Hang, Q.L., Yan, H.F., Pan, H.Y., Xu, J., Yu, D.P., Xi, Z.H., Xue, Z.Q., Feng, S.Q., Chemi. Phys. Lett. 345, 29(2001)Google Scholar
[15] Yan, H.F., Xing, Y.J., Hang, Q.L., Yu, D.P., Wang, Y.P., Xu, J., Xi, Z.H., Feng, S.Q., Chem. Phys. Lett. 323, 224(2000)Google Scholar
[16] Gole, J.L., Stout, J.D., Rauch, W.L., Wang, Z.L., Appl. Phys. Lett 76, 2346(2000)Google Scholar
[17] Wang, N., Zhang, Y.F., Tang, Y.H., Lee, C.S., Lee, S.T., Appl. Phys. Lett 73, 3902(1998)Google Scholar
[18] Yu, D.P., Bai, Z.G., Ding, Y., Hang, Q.L.. Zhang, H.Z., Wang, J.J., Zou, Y.H., Qian, W., Xiong, G.C., Zhou, H.T., Feng, S.Q., Appl. Phys. Lett 72, 3458(1998)Google Scholar
[19] Yu, D.P., Lee, C.S., Bello, I., Sun, X.S., Tang, Y.H., Zhou, G.W., Bai, Z.G., Zhang, Z., Feng, S.Q., Solid State Communications 105, 403(1998)Google Scholar
[20] Cui, Y., lieber, C‥M., Science 291, 851(2001)Google Scholar
[21] Cui, Y., Duan, X.F., Hu, J.T., Lieber, C. M., J. Phys. Chem. B104, 5213 (2000)Google Scholar
[22] Gudiksen, M. S., Lauhon, L.J‥, Wang, J.F., Smith, D. C.,, M‥Lieber, C., Nature 415, 61 (2002)Google Scholar
[23] Moffatt, W.G., The Handbook of Binary Phase Diagram, General Electric Company, Schenectady, NJ, 1978 Google Scholar