Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-21T13:47:36.306Z Has data issue: false hasContentIssue false

Polymer-Silica Nanocomposite Aerogels with Enhanced Mechanical Properties Using Chemical Vapor Deposition (CVD) of Cyanoacrylates

Published online by Cambridge University Press:  17 March 2011

Dylan J. Boday
Affiliation:
Materials Science & Engineering, University of Arizona, 1235 E. James E. Rogers Way, Tucson, AZ, 85721-0012
Douglas A. Loy
Affiliation:
Materials Science & Engineering, University of Arizona, 1235 E. James E. Rogers Way, Tucson, AZ, 85721-0012
Kimberley A. DeFriend
Affiliation:
Polymers & Coatings Group, Los Alamos National Laboratory, Los Alamos, NM, 87545
Kennard V. Wilson Jr
Affiliation:
Polymers & Coatings Group, Los Alamos National Laboratory, Los Alamos, NM, 87545
David Coder
Affiliation:
Materials Science & Engineering, University of Arizona, 1235 E. James E. Rogers Way, Tucson, AZ, 85721-0012
Get access

Abstract

Aerogels were structurally modified using chemical vapor deposition (CVD) of cyanoacrylate monomers to afford polycyanoacrylate-aerogel nanocomposites. Silica aerogels are low density, high surface area materials whose applications are limited by their fragility. Cyanoacrylate CVD allowed us to deposit a film of organic polymer throughout fragile porous monoliths within hours. Our experiments have shown that polymerization of the cyanoacrylate monomers was initiated by the adsorbed water on the surface of the silica permitting the nanocomposites structures to be formed with little or no sample preparation. We found that the strength of the polycyanoacrylate-aerogel nanocomposites increased thirty two-fold over the untreated aerogels with only a three-fold increase in density and an eight-fold decrease in surface area. Along with the improvement in mechanical properties, the aerogels became less hydrophilic than un-modified aerogels. Polycyanoacrylate-coated aerogels were placed directly into water and did not suffer catastrophic fragmentation as observed with un-modified silica aerogels.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carraher, C. E. Jr, Polymer News 2005, 30, 62.Google Scholar
2.A) Fesmire, J.E. Cryogenics 2006, 46, 111117 Google Scholar
B) Jones, S. M. J. Sol-Gel Sci. Techn. 2006, 40, 351.Google Scholar
3.A) Hrubesh, L.; W. J. Non-Cryst. Sol. 1998, 225, 335.Google Scholar
B) Lecloux, A.J.; Pirard, J.P. J. Non-Cryst. Sol. 1998, 225, 146.Google Scholar
C) Sumiyoshi, T.; Adachi, I.; Enomoto, R.; Iijima, T.; Suda, R.; Yokoyama, M.; Yokogawa, H. J. Non-Cryst. Sol. 1998, 225, 369.Google Scholar
4. Mammeri, Fayna; Bourhis, Le, Eric, Rozes, Laurence, Sanchez, Clement. J. Mater. Chem. 2005, 15, 3787.Google Scholar
5. Etienne, P.; Phalippou, J; Woignier, T.; Alaoui, A. J. Non-Cryst. Sol. 1995, 188, 19.Google Scholar
6. Einarsrud, M.; Nilsen, E.; Rigacci, A.; Pajonk, G. M.; Buathiner, S.; Valette, D.; Durant, M.; Chevalier, B.; Nitz, P.; Ehrburger-Dolle, F. J. Non-Cryst. Sol. 2001, 285, 1.Google Scholar
7. DeFriend, K A. Loy, D. A., U.S. Patent 20060216219, 2006 Google Scholar
8. Leventis, N.; Sotiriou-Leventis, C.; Zhang, G.; Rawashdeh, A. M. Nano Lett. 2002 2, 957.Google Scholar
9. Hunt, A. J.; Ayers, M. R.; Cao, W. J. Non-Crystal. Sol. 1995, 185, 227.Google Scholar
10. Czekanski, P.; Fasola, M.; Allison, J. J. Foren. Sci. 2006, 51, 1323.Google Scholar
11. Land, V. D.; Harris, T. M. Teeters, D. C. J. Non-Cryst. Sol. 2001, 283, 11.Google Scholar
12. Dhirendra Katti, N.K. . Appl. Polym. Sci., 1999, 74, 336.Google Scholar