Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T04:36:59.619Z Has data issue: false hasContentIssue false

Polymeric Thin Films for Electro-Optic Modulator and High Density Optical Memory Applications

Published online by Cambridge University Press:  21 February 2011

Larry R. Dalton
Affiliation:
University of Southern California, Loker Hydrocarbon Research Institute, Los Angeles, CA 90089–1661
Aaron W. Harper
Affiliation:
University of Southern California, Loker Hydrocarbon Research Institute, Los Angeles, CA 90089–1661
Zhiyong Liang
Affiliation:
University of Southern California, Loker Hydrocarbon Research Institute, Los Angeles, CA 90089–1661
Jingsong Zhu
Affiliation:
University of Southern California, Loker Hydrocarbon Research Institute, Los Angeles, CA 90089–1661
Uzi Efron
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265
Chiung-Shieng Wu
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265
Anson Au
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265
Get access

Abstract

Chromophores capable of undergoing conformational changes when exposed to ultraviolet or visible light have been synthesized with functional groups permitting attachment to polymer matrices. One class of such chromophores, containing reactive functionalities at both ends of the chromophore, are referred to as double-end crosslinkable (DEC) chromophores. These chromophores are used in the synthesis of hardened nonlinear optically active lattices and in the fabrication of buried channel nonlinear optical waveguides by photoprocessing; development of such waveguides represents a critical step in the production of polymeric electro-optic modulators. Such chromophores are also crucial to the phenomena of laser-assisted poling (also known as photochemically-induced poling). Finally, these chromophores are attached to the surface of polystyrene beads permitting the realization of room temperature spectral hole burning exploiting morphology-dependent resonances. Such resonances provide the basis of wavelength coding for the development of high density optical memories.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dalton, L. R., Sapochak, L. S., Chen, M. and Yu, L. P., in Molecular Electronics and Molecular Electronic Devices, edited by Sienicki, K. (CRC Press, Boca Raton, 1993) pp. 125208.Google Scholar
2. Dalton, L. R., Harper, A. W., Ghosn, R., Steier, W. H., Ziari, M., Fetterman, H., Shi, Y., V.Mustacich, R., Jen, A. K.-Y. and Shea, K. J., Chem. Mater. 7, in press (1995).Google Scholar
3. Penner, T. L., Armstrong, N. J., Willand, C. S., Schildkraut, J. S. and Robello, D. R., Proc. SPIE 1560, 377 (1991).Google Scholar
4. Forrest, S. R., Burrows, P. E., Haskal, E. I. and Zhang, Y., in Electrical. Optical, and Magnetic Properties of Organic Solid State Materials, edited by Garito, A. F., Jen, A. K.-Y., Lee, C. Y.-C. and Dalton, L. R. (Mater. Res. Soc. Proc. 328, Pittsburgh, PA, 1994) pp. 3750.Google Scholar
5. Yoshimura, T., Tatsuura, S. and Sotoyama, W., Thin Solid Films 9, 207 (1992).Google Scholar
6. Yitzchaik, S., Kakkar, A. K., Roscoe, S. B., Marks, T. J., Lundquist, P. M., Lin, W. and Wong, G. K., in Electrical. Optical and Magnetic Properties of Organic Solid State Materials, edited by Garito, A. F., Jen, A. K.-Y., Lee, C. Y.-C. and Dalton, L. R. (Mater. Res. Soc. Proc. 328, Pittsburgh, PA, 1994) pp. 2736.Google Scholar
7. Katz, H. E., Singer, K. D., Sohn, J., Dirk, C., King, L. and Gordon, H., J. Am. Chem. Soc. 109, 6561 (1987).Google Scholar
8. Burland, D. M., Miller, R. D. and Walsh, C. A., Chem. Rev. 94, 31 (1994).Google Scholar
9. Lin, J. T., Hubbard, M. A., Marks, T. J., Lin, W. and Wong, G. K., Chem. Mater. 4, 1148 (1992).Google Scholar
10. Becker, M. W., Sapochak, L. S., Ghosn, R., Xu, C., Dalton, L. R., Shi, Y., Kalluri, S., Steier, W. H. and Jen, A. K.-Y., Chem. Mater. 6, 104 (1994).Google Scholar
11. Jen, A. K.-Y., Drost, K. J., Cai, Y., Rao, V. P. and Dalton, L. R., J. Chem. Soc., Chem. Commun. 1994, 965.Google Scholar
12. Jen, A. K.-Y., Liu, Y.-J., Cai, Y., Rao, V. P. and Dalton, L. R., J. Chem. Soc., Chem. Commun. 1994, 2711.Google Scholar
13. Peng, Z. H. and Yu, L. P., Macromolecules 27, 2638 (1994).Google Scholar
14. Liang, Z., Dalton, L. R., Garner, S. M., Kalluri, S., Chen, A. and Steier, W. H., Chem. Mater. 7, in press (1994).Google Scholar
15. Xu, C., Wu, B., Todroova, O., Dalton, L. R., Shi, Y., Ranon, P. M. and Steier, W. H., Macromolecules 26, 5303 (1993).Google Scholar
16. Xu, C., Wu, B., Becker, M. W., Dalton, L. R., Ranon, P. M., Shi, Y. and Steier, W. H., Chem. Mater. 5, 1439 (1993).Google Scholar
17. Chen, M., Yu, L. P., Shi, Y. and Steier, W. H., Macromolecules 26, 5741 (1992).Google Scholar
18. Dalton, L. R., Wu, B., Harper, A. W., Ghosn, R., Ra, Y., Liang, Z., Montgomery, R., Kalluri, S., Shi, Y., Steier, W. H. and Jen, A. K.-Y., in Nonlinear Optical Polymers: From Molecules to χ(2) Applications, edited by Lindsay, G. A. and Singer, K. D. (ACS Symposium Series, Washington, D.C., 1995), in press.Google Scholar
19. Liang, Z., Dalton, L. R., Garner, S. M., Kalluri, S., Chen, A. and Steier, W. H., Macromolecules, in press (1995).Google Scholar
20. Yang, Z., Xu, C., Wu, B., Dalton, L. R., Kalluri, S., Steier, W. H., Shi, Y. and Bechtel, J. H., Chem. Mater. 6, 1899 (1994).Google Scholar
21. Caldwell, J. B., Cruse, R. W., Drost, K. J., Rao, V. P., Jen, A. K.-Y., Wong, K. Y., Cai, Y. M., Mininni, R. M., Kenney, J., Binkley, E., Dalton, L. R., Shi, Y. and Steier, W. H., in Electrical. Optical, and Magnetic Properties of Organic Solid State Materials, edited by Garito, A. F., Jen, A. K.-Y., Lee, C. Y.-C. and Dalton, L. R. (Mater. Res. Soc. Proc. 328, Pittsburgh, PA, 1994) pp. 535–40.Google Scholar
22. Kalluri, S., Steier, W. H., Yang, Z., Xu, C., Wu, B., Dalton, L. R., Shi, Y. and Bechtel, J. H., Proc. SPIE 2285, 67 (1994).Google Scholar
23. Kalluri, S., Shi, Y., Steier, W. H., Yang, Z., Xu, C., Wu, B. and Dalton, L. R., Appl. Phys. Lett. 65, 2651 (1994).Google Scholar
24. Oviatt, H. W. Jr., Shea, K. J., Kalluri, S., Shi, Y., Steier, W. H. and Dalton, L. R., Chem. Mater. 7, 493 (1995).Google Scholar
25. Hsiue, G. H., Kuo, J. K., Jeng, R. J., Chen, J. I., Jiang, X. L., Marturunkakul, S., Kumar, J. and Tripathy, S. K, Chem. Mater. 6, 134 (1994).Google Scholar
26. Cao, X. F., Yu, L. P. and Dalton, L. R., Proc. Opt. Soc. Amer., Nov. 4–9, 1990, Boston, MA, Technical Digest, p. 165.Google Scholar
27. Sapochak, L. S., McLean, M. R., Chen, M., Dalton, L. R. and Yu, L. P., Proc. SPIE 1626, 431 (1992).Google Scholar
28. Sekkat, Z. and Dumont, M., Nonlin. Opt. 2, 359 (1992).Google Scholar
29. Steier, W. H., Shi, Y., Ranon, P. M., Xu, C., Wu, B., Dalton, L. R., Wang, W., Chen, D. and Fetterman, H., Proc. SPIE 2025, 535 (1993).Google Scholar
30. Wang, W., Chen, D., Fetterman, H. R., Shi, Y., Steier, W. H. and Dalton, L. R., Appl. Phys. Lett. 65, 929 (1994).Google Scholar
31. Arnold, S., Liu, C. T., Whitten, W. B. and Ramsey, J. M., Opt. Lett. 16, 420 (1991).Google Scholar