Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-23T12:24:35.650Z Has data issue: false hasContentIssue false

Polymeric Carbon Dioxide

Published online by Cambridge University Press:  15 February 2011

Choong-Shik Yoo*
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551, yool@llnl.gov
Get access

Abstract

Synthesis of polymeric carbon dioxide has long been of interest to many chemists and materials scientists. Very recently we discovered the polymeric phase of carbon dioxide (called CO2-V) at high pressures and temperatures. Our optical and x-ray results indicate that CO2-V is optically non-linear, generating the second harmonic of Nd: YLF laser at 527 nm and is also likely superhard similar to cubic-boron nitride or diamond. COz-V is made of CO4 tetrahedra, analogous to SiO2 polymorphs, and is quenchable at ambient temperature at pressures above 1 GPa. In this paper, we describe the pressure-induced polymerization of carbon dioxide together with the stability, structure, and mechanical and optical properties of polymeric CO2-V. We also present some implications of polymeric CO2 for high-pressure chemistry and new materials synthesis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yoo, C.S., Cynn, H., Nicol, M., submitted (1999).Google Scholar
2. Iota, V., Yoo, C.S., Cynn, H., Science 283, 1510 (1999).Google Scholar
3. Yoo, C.S. et al. , Phys. Rev. Lett. (1999) in print.Google Scholar
4. Vos, W.L.. Finger, L.W., Hemley, R.J., Hu, J.Z., Mao, H.K., and Schouten, J.A., Nature 358, 46 (1992).Google Scholar
5. Weir, S.T., Mitchell, A.C., Nellis, W.J., Phys. Rev. Lett. 76, 1860 (1996).Google Scholar
6. Goncharov, A.F., Struzhkin, V.V., Somayazulu, M.S., Hemley, R.J., Mao, H.K., Science 273, 218 (1996).Google Scholar
7. Liu, A.Y. and Cohen, M.L., Science 245, 842 (1989).Google Scholar
8. Mailhiot, C., Yang, L.H., McMahan, A.K., Phys. Rev. B 56, 140 (1992).Google Scholar
9. Parker, L.J., Atou, T., Badding, J.V., Science 273, 95 (1996).Google Scholar
10. Meer, R. van der, German, A.L., and Heikens, D., Poly. Sci. 15, 1765 (1977).Google Scholar
11. Lorenzana, H.; a private communication Google Scholar
12. Aoki, K., Yamawaki, H., Sakashita, M., Gotoh, Y., and Takemura, K., Science 263, 356 (1994).Google Scholar
13. Etters, R.D. and Bogdan, K., J. Chem. Phys. 90, 4537 (1989).Google Scholar
14. Olijnyk, H. and Jephcoat, A.P., Phys. Rev. B 57, 879 (1998).Google Scholar
15. The correspondence between the mode frequencies for the two structures can be estimated by considering the ration of the reduced vibrational masses for the symmetric stretching modes in singly bonded C-O-C and Si-O-Si structures. The angle between the two X-O single bonds is chosen to match the bond angle in α-quartz (104.6°). The low frequency limit (398 cm) results from considering isolated structures (X20 molecules) while the upper frequency (491 cm−1) results by considering the second order shell of O atoms moving rigidly with the C (Si).Google Scholar
16. Hemley, R.J., in High Pressure Research in Mineral Physics, edited by Manghnani, M. H. and Syono, Y., pp 347, (Terra Sci. Pub. Co., Tokyo, 1987).Google Scholar
17. Sharma, S.K., Mammone, J.F., Nicol, M.F., Nature 292, 140 (1981).Google Scholar
18. Jorgensen, J.D., J. Appl. Phys. 49, 5473 (1973).Google Scholar
19. Pryde, A.K.A. and Dove, M.T., Phys. Chem. Minerals, 26, 171 (1998).Google Scholar
20. Dombal, R.F. de and Carpenter, M.A., Eur. J. Mineral 5, 607 (1993) and references therein.Google Scholar
21. Graetsch, H. and Flirke, O.W., Zeitschrift for Kristallographic 195, 31 (1991).Google Scholar
22. Knittle, E., “Mineral Physics and Crystallography, a Handbook of Physical Constants” Edited by Ahrens, T., pp 98142 (AGU, 1995); Knittle et al., Nature 337, 349 (1989).Google Scholar
23. Olinger, B., J. Chem. Phys. 77, 6255 (1982).Google Scholar
24. Knittle, E., “Static Compression Measurements of Equation of State” in “Mineral Physics and Crystallography, a Handbook of Physical Constants” Edited by Ahrens, T., pp 98142 (AGU, 1995) and the references therein.Google Scholar
25. Knittle, E., Wentzcovitch, R.M., Jeanloz, R., Cohen, M.L., Nature 337, 349 (1989).Google Scholar
26. Driscoll, T.J. and Lawandy, N.M., J. Opt. Soc. Am. B11, 355 (1994).Google Scholar
27. Sasaki, Y. and Ohmori, Y., Appl. Phys. Lett. 39, 466 (1981).Google Scholar
28. In general, the second harmonic of light is generated in non-centrosymmetric crystals; whereas, only odd harmonic are observed in centrosymmetric crystals. This stems from the second order polarization dependence of electromagnetic transitions. In crystals having a center of symmetry, the inversion of all coordinates must leave all relationships between physical quantities unchanged. Because the electric field E is odd under inversion operations, the polarization field P must also be odd, and the coefficients of all even powers in the expansion of the polarization: P = ωoX1, Esin (ωt) + ωoX2 E2 sin2 (ωt) + ωoX3 E3 sin3(ωt) +… must vanish. In such crystals, only odd multiples of the incident frequency can be generated.Google Scholar
29. Wyckoff, R.W.G. in Crystal Structures, vol 1, 2nd ed., pp 467 (Intersci., New York, 1963).Google Scholar
30. Stishov, S.M. and Popova, V., Geochem, Eng. Trans. 10, 923 (1961).Google Scholar
31. Yoo, C.S. and Nicol, M.F., J. Phys. Chem. 90, 6726 (1986); ibid 90, 6732 (1986).Google Scholar
32. Katz, A.I., Schiferl, D., and Mills, R.L., J. Phys. Chem. 88, 3176 (1981).Google Scholar
33. Gauthier, M., Pruzan, P., Chervin, J.C., and Besson, J.M., Phys. Rev. B 37, 2102 (1988).Google Scholar
34. Hanfland, M., Hemley, R.J., Mao, H.K., Phys. Rev. Lett. 70, 3760 (1993).Google Scholar
35. Akahama, Y., Kawamura, H., Carlson, S., Bihan, T. Le, and Hasermann, D., the abstract in a proceedings to the AIRAPT-17, Hawaii, July 25-30, 1999, p72; also L. Ulivi, R. Bini, F. Gorelli, M. Santoro, ibid, p73.Google Scholar