Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-24T04:23:48.891Z Has data issue: false hasContentIssue false

Polymer Relaxational Dynamics Associated With Ionic Conduction in Confined Geometry

Published online by Cambridge University Press:  11 February 2011

J.-M. Zanotti
Affiliation:
Intense Pulsed Neutron Source, Argonne Nat. Lab., Argonne, IL 60439, USA Laboratoire Leon Brillouin (CEA-CNRS), CEA Saclay, 91191 Gif/Yvette cedex, France
L. J. Smith
Affiliation:
Material Science Division, Argonne Nat. Lab., Argonne, IL 60439, USA
E. Giannelis
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
P. Levitz
Affiliation:
LPMC (CNRS), Ecole Polytechnique, Palaiseau, France
D. L. Price
Affiliation:
Intense Pulsed Neutron Source, Argonne Nat. Lab., Argonne, IL 60439, USA CRMHT (CNRS), Avenue de la Recherche Scientifique, 45071 Orléans, France
M.-L. Saboungi
Affiliation:
Material Science Division, Argonne Nat. Lab., Argonne, IL 60439, USA CRMD(CNRS), Avenue de la Recherche Scientifique, 45071 Orléans, France
Get access

Abstract

Results of a quasi-elastic incoherent neutron scattering study of the influence of confinement on polyethylene oxide (PEO) and (PEO)8Li+[(CF3SO2)2N]- (or (POE)8LiTFSI) dynamics are presented. The confining media is Vycor, a silica based hydrophilic porous glass. We observe a strong slowing down of the bulk polymer dynamics under presence of Li salt. The confinement also affects dramatically the apparent mean-square displacement of the polymer. As supported by DSC measurements, the PEO melting transition at 335 K is strongly attenuated under confinement, suggesting that confinement modifies the global structure of the system, increasing the fraction of amorphous PEO by respect to crystalline phase. Local relaxational PEO dynamics is successfully described by the DLM (Dejean-Laupretre-Monnerie) model usually used to interpret NMR spin-lattice relaxation time data. The scattering vector dependence of the correlation times deduced from inelastic neutron scattering data is found to obey a power-law dependence. DSC and preliminary ionic conduction measurements are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Larminie, J. and Dicks, A., Fuel Cell Systems explained, Wiley, 2000.Google Scholar
2. Donoso, J. P., Bonagamba, T. J., Panepucci, H.C. and Oliveira, L. N., Gorecki, W., Berthier, C. and Armand, M., J. Chem. Phys. 98 10026, (1993)Google Scholar
3. Halley, J.W., Curtiss, L. A. and Baboul, A. G., J. Chem. Phys., 111, 3302 (1999).Google Scholar
4. International Workshop on dynamics in confinement, edited by Frick, B., Zorn, R. and Buttner, H., Journal de Physique, 10, PR7 (2000).Google Scholar
5. Giannelis, E. P., Krishnamoorti, R. and Manias, E., Advances in polymer science 138, 107 (1999).Google Scholar
6. Smith, L.J., Zanotti, J.-M., Saboungi, M.-L. and Price, D.L., this volume. 7. Vycor Brand Porous Glass #7930. Corning Glass works.Google Scholar
8. Levitz, , Ehret, G., Sinha, S. K. and Drake, J. M., J. Chem. Phys., 95, 6151 (1991).Google Scholar
9. Lal, J., Sinha, S.K. and Auvray, L., J. Phys. II France 7, 1597 (1997).Google Scholar
10. Daoud, M. and de Gennes, P.-G., J. de Physique, 38, 8593 (1977).Google Scholar
11. Stapf, S. and Kimmich, R., Macromolecule 29, 1638 (1996).Google Scholar
12. Smith, G.D., Yoon, D.Y., Jaffe, R.L., Colby, R.H., Krishnamoorti, R. and Fetters, L.J., Macromolecules 29, 3462 (1996).Google Scholar
13. Muller-Plathe, F. and Van Gusteren, W. F., J. Chem. Phys., 103, 4745 (1995).Google Scholar
14. Borodin, O. and Smith, G.D., Macromolecules, 33, 2273 (2000).Google Scholar
15. Mao, G., Saboungi, M.-L., Price, D. L., Armand, M. B. and Howells, W. S., Phys. Rev. Lett., 84:5536 (2000).Google Scholar
16. Mao, G., Perea, R. F., Howells, W. S., Price, D. L. and Saboungi, M. L., Nature, 405, 163 (2000).Google Scholar
17. Armand, M., Goreki, W. and Andreani, R., in Proceedings of the second international Symposium on Polymer Electrolytes, edited by Scrosati, B. (Elsevier Applied Science, New-York, 1990), p91.Google Scholar
18. Dejean de la Batie, R., Laupretre, F. and Monnerie, L., Macro-molecules 21, 2045 (1988).Google Scholar
19. Triolo, A., Arrighi, V., Triolo, R., Passerini, S., Mastragostino, M., Lechner, R.E., Ferguson, R., Borodin, O. and Smith, G.D., Physica B 301, 163 (2001).Google Scholar
20. Mos, B., Verkerk, P., Pouget, S., van Zon, A., Bel, G.-J., de Leeuw, S.W. and Eisenbach, C.D., J. Chem. Phys., 113, 4 (2000).Google Scholar
21. Richter, D., Monkenbusch, M., Allgeier, J., Arbe, A., Colmenero, J., Farago, B., Cheol Bae, Y. and Faust, R., J. Chem Phys 111, 6107 (1999).Google Scholar