Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-06T19:45:27.240Z Has data issue: false hasContentIssue false

Polymer Liquid Crystals and Their Blends: A Hierarchy of Structures

Published online by Cambridge University Press:  21 February 2011

Witold Brostow
Affiliation:
Center for Materials Characterization and Department of Chemistry, University of North Texas, Denton, TX 76203-5308
Michael Hess
Affiliation:
Center for Materials Characterization and Department of Chemistry, University of North Texas, Denton, TX 76203-5308 FB6- Physikalische Chemie, Universität Duisburg, D-W-4100 Duisburg, Federal Republic of Germany
Get access

Abstract

Hierarchical structures are possible in polymer liquid crystals (PLCs) since each molecule contains at least two kinds of building blocks that are not homeomorphic to each other. We discuss some examples of molecular structures and phase structures of monomer liquid crystals (MLCs) and PLCs: smectic phases formed by interdigitated MLC molecules; PLC molecule classification based on increasing complexity – and its consequences on properties of the materials; and formation and phase structures of LC-rich islands in PLCs and in PLC blends. Some rules pertaining to hierarchical structures are formulated. The knowledge of hierarchies is neccessary – but not sufficient – for intelligent procesing of PLCs and their blends and for achieving properties defined in advance. Computer modelling represents another important element of building materials to order.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Samulski, E.T., Faraday Disc. 79, 7 (1985).CrossRefGoogle Scholar
2. Brostow, W., Kunststoffe 78, 411 (1988).Google Scholar
3. Witt, W., Kunststoffe 78, 795 (1988).Google Scholar
4. Brostow, W., Polymer 31, 979 (1990).CrossRefGoogle Scholar
5. Baer, E., Scientific American 254, 179 (1986).Google Scholar
6. Weng, T., Hiltner, A. and Baer, E., J. Mater. Sci. 21, 744 (1986).Google Scholar
7. Baer, E., Hiltner, A. and Keith, H.D., Science 235 1015 (1987) and references therein.Google Scholar
8. Baer, E. and Hiltner, A., presented at this Symposium.Google Scholar
9. Sawyer, L.C. and Jaffe, M., J. Mater. Sci. 24. 1897 (1986).Google Scholar
10. Sawyer, L.C., Chen, R.T., Jamieson, M.G., Musselman, I.H. and Russell, P.E., J. Mater. Sci. Letters 11. 69 (1992).CrossRefGoogle Scholar
11. Sawyer, L.C. and Jaffe, M., presented at this Symposium; L.C. Sawyer, I.H. Musselman, R.T. Cheng, M.G. Jamieson and P.E. Russell, preprint from Hoechst-Celanese, Summit, NJ, 1992 Google Scholar
12. Ernst, B., Der Zauberspiegel des M.C. Escher (Taco, Berlin, 1986).Google Scholar
13. Escher, M.C: Art and Science, edited by Coxeter, H.S.M., Emmer, M., Penrose, R. and Teuber, M.L. (North-Holland, Amsterdam, 1986).Google Scholar
14. Grunbaum, B., p. 53 in Ref. 13.Google Scholar
15. Penrose, R., TheEmpneror's New Mind (Oxford University Press, 1989).Google Scholar
16. Tarasiewicz, S. and Léger, F., in Proc. Can. Conf. Electr. & Comp. Eng. Montreal 1989, pp. 11481153.Google Scholar
17. Tarasiewicz, S. and Radziszewski, P., Mater. Chem. & Phys. 25, 1 (1990).CrossRefGoogle Scholar
18. Tarasiewicz, S. and Radziszewski, P., Mater. Chem. & Phys. 25, 13 (1990).Google Scholar
19. Tarasiewicz, S. and Radziszewski, P., Mater. Chem. & Phys. 25, 21 (1990).Google Scholar
20. Mackay, A.L., Croat. Chem. Acta 57, 725 (1984).Google Scholar
21. Mackay, A.L., Physica B 131, 300 (1985).Google Scholar
22. Mackay, A.L., Colloque de Physique 51,. supplement au no. 23, C7-249 (1990).Google Scholar
23. Mackay, A.L., Colloque de Physique 51,. supplement au no. 23, C7399 (1990).Google Scholar
24. Brostow, W., Dussault, J.-P. and Fox, B.L., J. Comput. Phys. 29, 81 (1978).Google Scholar
25. Medvedev, N.N., Geiger, A. and Brostow, W., J. Chem. Phys. 93 8337 (1990).Google Scholar
26. Kuratowski, K. and Mostowski, A., Set Theory (North-Holland – PWN, Amsterdam – Warsaw, 1967).Google Scholar
27. Boltyanskii, V.G. and Yefremovich, V.A., Ocherk osnovnykh idei topologii (Nauka, Moskva – Leningrad, 1960).Google Scholar
28. Penrose, R., p. 143 in Ref. 13.Google Scholar
29. Brostow, W., Science of Materials (Wiley, New York – London, 1979); W. Brostow, Introduccion a la ciencia de los materiales (Limusa, México, D.F., 1981); W. Brostow, Einstieg in die moderne Werkstoffwissenschaft (Hanser, Munchen – Wien, 1985).Google Scholar
30. Bazuin, C.G., Guillon, D., Skoulios, A. and Nicoud, J.-F., Liq. Crystals 1, 181 (1986).Google Scholar
31. Bazuin, C.G., Guillon, D., Skoulios, A. and Zana, R., J. Physique 47, 927 (1986).Google Scholar
32. Diele, S., Mädicke, A., Knauft, K., Neutzler, J., Weißflog, W. and Demus, D., Liq. Crystals 10, 47(1991).Google Scholar
33. Dehne, H., Roger, A., Demus, D., Diele, S., Kresse, H., Pelzl, G., Wedler, W. and Weissflog, W., Liq. Crystals 6, 47, 1989).Google Scholar
34. Alexandrov, A.I., Pashkova, T.V., Krücke, B., Kostromin, S.G. and Shibaev, V.P., J. Physique II 1, 939 (1991).Google Scholar
35. Demus, D., Liq. Crystals 5, 75 (1989).Google Scholar
36. Brostow, W., Dziemianowicz, T.S., Romanski, J. and Werber, W., Polymer Eng. & Sci. 28. 785 (1988).Google Scholar
37. Menczel, J. and Wunderlich, B., J. Polymer Sci. Phys. 18 1433 (1980).Google Scholar
38. Hedmark, P.G., Werner, P.-E., Westdahl, M. and Gedde, U.W., Polymer 30, 2068 (1989).Google Scholar
39. Gedde, U.W., Buerger, D. and Boyd, R.H., Macromolecules 20, 988 (1987).CrossRefGoogle Scholar
40. Brostow, W., Kauschik, B.K., Mall, S.B. and Talwar, I.M., Polymer 15. in press (1992).Google Scholar
41. Brostow, W. and Samatowicz, D., submitted to Polymer Eng. & Sci.Google Scholar
42. Brostow, W., in Fifth Israel Materials Engingeereing Conference, edited by Bamberger, M. and Schorr, M. (Freund Publ. House, Tel Aviv –London, 1991), pp. 219–241.Google Scholar
43. Blonski, S. and Brostow, W., J. Chem. Phys. 95, 2890 (1991).Google Scholar
44. Blonski, S. and Brostow, W., in preparation.Google Scholar
45. Brostow, W., Mater. Chem. & Phys. 13, 47 (1985).CrossRefGoogle Scholar
46. Brostow, W., in Failure of Plastics, edited by Brostow, W. and Corneliussen, R.D. (Hanser – SPE, Munich – Vienna – New York, 1986), Chap.10.Google Scholar
47. Brostow, W. and Macip, M.A., Macromolecules 22, 2761 (1989).CrossRefGoogle Scholar
48. Brostow, W., Fleissner, M. and Müller, W.F., Polymer -32, 419 (1991).Google Scholar
49. Hippel, A.R. Von, Molecular Science and Molecular Engianeering (The Technology Press of MIT – Wiley, New York, 1959).Google Scholar
50. Desio, G.P. and Rebenfeld, L., J. Appl. Polymer Sci. 39, 825 (1990).Google Scholar
51. Rebenfeld, L., Desio, G.P. and Wu, J.C., J. Appl. Polymer Sci. 42. 801 (1991).CrossRefGoogle Scholar
52. Rebenfeld, L., presented at this Symposium.Google Scholar
53. Brostow, W., Dziemianowicz, T.S., Hess, M. and Kosfeld, R., in Polynmer Based Molecular Composites, edited by Schaefer, D.W. and Mark, J.E.(Mater. Res. Soc. Proc. 171 Pittsburgh, PA 1990), pp. 177182.Google Scholar
54. Gedde, U.W. (private communication from the Department of Polymer Technology, The Royal Institute of Technology, Stockholm, 1991).Google Scholar