Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-19T03:24:52.042Z Has data issue: false hasContentIssue false

Polycrystalline Sil-x-yGex.Cy for Suppression of Boron Penetration in PMOS Structures

Published online by Cambridge University Press:  10 February 2011

C. L. Chang
Affiliation:
Department of Electrical Engineering, Center for Photonics and Optoelectronic Materials, Princeton University, Princeton, NJ 08544. clchang@ee.princeton.edu
J. C. Sturm
Affiliation:
Department of Electrical Engineering, Center for Photonics and Optoelectronic Materials, Princeton University, Princeton, NJ 08544.
Get access

Abstract

We have fabricated polycrystalline Sil-x-yGexCy by Rapid Thermal Chemical Vapor Deposition and used it as part of a polycrystalline gate structure for PMOS devices. The results showed that the use of carbon in polycrystalline Sil-x-yGexCy suppressed boron penetration across the gate oxide. No effects of gate depletion with the use of poly-Sil-x-yGexCy were observed. Our work suggests that the addition of carbon reduced the chemical potential of boron in Sil-x-yGexCy, which deterred boron from diffusing across the underlying gate oxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hu, G.J. and Bruce, R.H., IEEE Trans. Electron Devices, ED–32, 584 (1985).Google Scholar
2 Sun, J.Y.C., Taur, Y., Dennard, R.H., and Klepner, S.P., IEEE Trans. Electron Devices, ED–34, 19 (1987).Google Scholar
3 Pfiester, J.R., Baker, F.K., Mele, T.C., Tseng, H.H., Tobin, P.J., Hayden, J.D., Miller, J.W., Gunderson, C.D., and Parrillo, L.C., IEEE Trans. Electron Devices, ED–37, 1842 (1990).Google Scholar
4 Baker, F.K., Pfiester, J.R., Mele, T.C., Tseng, H.H., Tobin, P.J., Hayden, J.D., Gunderson, C.D., and Parrillo, L.C., IEDM Tech Digest, 443 (1989).Google Scholar
5 Fair, R. B., J. Electrochem. Soc., 144, 708 (1997).Google Scholar
6 Lanzerotti, L.D., Sturm, J.C., Stach, E., Hull, R., Buyuklimanli, T., and Magee, C., Appl. Phys. Lett., 70, 3125 (1997).Google Scholar
7 Ban, I., Ozturk, M.C., and Demirilioglu, E.K., IEEE Trans. Electron Devices, 44, 1544 (1997).Google Scholar
8 Stolk, P.A., Gossmann, H.J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S., Haynes, T.E.. J. Appl. Phys., 81, 6031 (1997).Google Scholar
9 Cao, M., Wang, A., and Saraswat, K., J. Electrochem. Soc., 142, 1566 (1995).Google Scholar
10 Tsai, J.A. and Reif, R., Appl. Phys. Lett., 66, 1809 (1995).Google Scholar
11 Wright, P.J. and Saraswat, K.C., IEEE Trans. Electron Devices, ED–36, 879 (1989).Google Scholar